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ABSTRACT 
 
 

Emerging peer-to-peer concepts provide new possibilities but also challenges for 

distributed applications. Despite their significant potential, current peer-to-peer networks lack 

efficient group communication. This thesis addresses this deficiency and proposes the P2P 

Messaging System, which collaborates with peer-to-peer networks. For each peer group, it 

establishes virtual overlay networks based on the novel multi-ring topology that addresses peer 

heterogeneity and dynamics. Thus, the system overcomes the topological restrictions of peer-

to-peer networks and provides a scalable and robust high performance infrastructure tailored 

to group communication. The P2P Messaging System derived from a server-less and 

extensible high performance messaging system, also introduced by this thesis. Because of the 

component-based architecture, many components of the server-less system are reused by the 

peer-to-peer system. Experimental benchmarks provided evidence for the high performance 



 iii

and scalability of the P2P Messaging System. This thesis’ contribution is a high performance 

messaging framework that improves group communication in peer-to-peer environments. 
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CHAPTER 1 

INTRODUCTION 

The enormous growth of the Internet initiated various new trends. Significant 

technology enhancements brought distributed systems, which allow applications to run on 

multiple machines at different locations. Distributed systems allow scalability, robustness, and 

efficient use of available resources. However, distributed system components needed more 

powerful communication methods than the simpler client/server architecture. Common 

techniques based on remote procedure calls or plain sockets could not satisfy the need. 

 Messaging systems, also known as Message Oriented Middleware, addressed the 

increased communication demand of distributed systems. They deliver data units, called 

messages or events, and provide extended communication features, like queuing and exactly-

once-delivery. In addition, they offer powerful one-to-many and many-to-many 

communication allowing data sources to have any number of destinations. This is often based 

on the publisher/subscriber concept, which allows decoupling the data sources and the 

destinations. In short, messaging systems allow powerful data communication and take care of 

the details. 

The significance of messaging systems in the enterprise domain increased lately. This 

can be illustrated by Sun’s Java Message Service (JMS), which was introduced to offer a 

common interface for Java applications to existing messaging products. Soon, popular 

products, like IBM’s MQSeries (IBM 2002), implemented the JMS interface. Further, many 

systems were built exclusively for JMS, like SonicMQ (Sonic 2002) and SwiftMQ (IIT 2002). 
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However, the real importance of JMS was demonstrated in conjunction with the widely used 

Java 2 Enterprise Edition (J2EE). JMS, being a separate product on its own before, became an 

integral part of the J2EE platform. In addition, J2EE’s component architecture, Enterprise 

Java Beans, was extended by a third bean type, the message-driven bean. This new bean type 

introduces JMS’s communications features into the component architecture. Component-

based development profits from messaging especially since it allows a high degree of 

decoupling between components. 

Independently from the enterprise domain, a complementary type of distributed 

systems, the peer-to-peer networks, emerged. These huge networks follow a decentralized 

approach and harvest the resources of each peer. They do not depend on dedicated network 

servers to provide services. Each peer is considered as a “servent”, a server and a client 

simultaneously. A peer may request services from other peers while it provides services by 

itself to different peers. The peer-to-peer concept became popular with file-sharing 

applications, like Napster, Gnutella (Gnutella 2002), and the proprietary Fasttrack network. 

However, the peer-to-peer concept is not restricted to this application type. For example, 

Sun’s JXTA provides a general peer-to-peer platform independent from any application 

purpose. Currently, there are various efforts being made to harvest the enormous resources of 

peer-to-peer networks. Examples are distributed file systems (Druschel and Rowston 2001), 

distributed processing frameworks (DistributedNet 2002), and content delivery networks 

(Kontiki 2002). In short, peer-to-peer networks may lead to a paradigm shift and may replace 

client/server architectures for several purposes. 
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1.1. Motivation 

While messaging systems are established in enterprise domains, they are still rarely 

used elsewhere. Nevertheless, messaging is a general communication concept and not 

restricted to centralized infrastructures. Distributed applications, which do not involve 

dedicated servers, could utilize messaging as well. Because of their communication-intensive 

character, peer-to-peer applications can benefit from this approach. Peer-to-peer networks are 

still immature and messaging could supply advanced and proven communication methods. In 

particular, publisher/subscriber communication could help to form topic-based peer groups 

and allow group members to collaborate. 

1.2. Problem Statement 

There are two main reasons why current messaging systems are less usable in 

decentralized environments. Firstly, they usually rely on dedicated message servers, which can 

be setup, maintained and accessed within an enterprise infrastructure relatively easy. However, 

such infrastructures are seldom available outside enterprises. Secondly, messaging systems are 

usually designed to provide a high degree of reliability while performance issues were regarded 

as less important. The performance penalty due to the overhead of current messaging systems 

makes them inappropriate for applications requiring less reliability but more performance. 

One of the two goals in this thesis is to prototype a server-less and high performance 

messaging system. The lack of servers and centralized management require the messaging 

participants to take over more responsibility and coordination. A higher performance may be 

achieved by reducing the message overhead and making the delivery completely asynchronous. 
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Nevertheless, special measures are required for peer-to-peer networks. Despite their 

great potential, they still lack efficient group communication mechanisms. Current peer-to-

peer networks suffer from several problems. Firstly, the topology of the network is more or 

less random. Slow peers may slow down entire network branches. Secondly, the topology is 

static and prohibits dynamic adjusting to alternatives that would be more efficient. Lastly, 

group communication data has to traverse peers, which are not group members but happened 

to be on the group communication route. This results in consuming bandwidth of not 

involved peers, and it may slow down the group communication as additional network nodes 

have to be traversed. The second goal of this thesis is to deal with these problems and provide 

a suitable solution for peer-to-peer networks with their heterogeneous and dynamic character. 

The fundamental idea is to make a virtual overlay network for each topic group to be 

independent from the existing peer-to-peer network. Thus, the topology can be setup more 

efficiently. In addition, the topology may also be adjusted dynamically to adjust to changes and 

optimize the delivery. Finally, it only consumes the bandwidth of involved peers since the 

virtual network includes only peers interested in a topic. 

In short, the contribution of this thesis is providing high performance messaging 

concepts for server-less applications and especially peer-to-peer networks. 

1.3. Outline 

Chapter II reviews existing messaging systems, which are mostly applied within a 

centralized enterprise domain. In addition, emerging research projects with more decentralized 

approaches will be reviewed. In Chapter III, a messaging system prototype is designed and 
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implemented. Underlying models, concepts and algorithms are described. The goal is to 

develop a server-less system with a strong emphasis on high performance. However, the 

prototype does not scale well with a growing number of users. Thus, Chapter IV investigates 

existing network issues in messaging and peer-to-peer domains in order to initiate the 

discussion about scalability issues. It reviews different multicast approaches and common 

network topologies. Chapter V proposes the multi-ring topology. It aims to be fast, scaleable 

and robust within peer-to-peer networks. Chapter VI presents experimental benchmark 

results. It shows that the presented messaging system prototypes are efficient. Chapter VII 

concludes about the proposed messaging system, the proposed network topology and its 

applicability in peer-to-peer networks. 
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CHAPTER 2 

RELATED WORK 

Several available distributed message/event systems aim at easing the development of 

communication-intensive distributed applications. This chapter reviews systems, which are 

related to common object-oriented middleware products like COM+, CORBA, and Java-

based (J2EE) solutions: COM+ Event System, CORBA Event Service, CORBA Notification 

Service, and Java Message Service. The goal is to review their software architecture and 

functionality. This discussion is focused on the publisher/subscriber and push model. Further, 

we look at emerging peer-to-peer systems: Grid Event Service, Narada, Siena, Pastry, Scribe 

and JXTA. Besides the basic concepts, we focus on important aspects for peer-to-peer 

networking like efficiency, topology, scalability, and robustness. 

2.1. Messaging Terms and Principles 

2.1.1 Messages and Events 

One group of the discussed systems makes use of the term “message” while others 

prefer “event” instead. In the context of the systems, however, there is no difference in the 

meaning. Both describe a piece of data, which is sent from one object and received by others 

in order to communicate with each other. The term “event” implies some incident as a 

motivation or trigger for sending the piece of data. “Message” is the more general term, 

because it does not tell anything about the reason why it is sent. Further, “message” does not 

tell what it actually is; it could be some text, a picture, a Java Object or anything else. An 
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“event” is not the actual data in the strict sense although there can be some message data 

associated with it. 

The difference might be slight, but in the context of messaging and event Systems, 

“message” is the more appropriate term. The systems offer functionality in the described 

“message” sense. Thus, the terms “message” and “messaging System” are preferred in this 

thesis, although some systems relate themselves to “events.” 

2.1.2 Messaging System 

A messaging system is the layer between the communication partners. It offers 

interfaces to send and receive messages. Internally it will queue them, route them to the 

destination and take care of involved networking transportation. In addition to this basic 

functionality, there exist usually features, as filtering messages and taking care of Quality-of-

Service parameters, like message priorities or reliability. Messaging systems can be seen an as 

specialized type of middleware and are sometimes called Message Oriented Middleware 

(MOM). For distributed application development, they offer high-level programming 

interfaces and take care of the communication details. 

2.1.3 Publishers and Subscribers 

A message is sent from a sender to one or many receivers. A publisher can be seen as 

a sender with multiple recipients, the subscribers. The association between the publisher(s) 

and its subscribers is often defined by a topic. Publishers post messages to a specific topic. All 

the subscribers, which expressed their interest in this topic, receive these messages. Often it is 
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a one-to-many communication; but it can also be many-to-many communication, if multiple 

publishers are involved. Messaging systems usually support publisher/subscriber concepts. 

2.1.4 Synchronous versus Asynchronous Communication 

The Remote Procedure Call (RPC) concept provides a synchronous communication 

model. When the client calls a remote procedure, a request is sent to the server. The server 

will handle the request and sends back a result. In the meantime, the client has to wait until 

the request is completed and the result is sent back. This is an example of synchronous 

communication. In contrast to this, messaging is asynchronous. The client sends a message, 

for example a service request, to the server. Instead of waiting for the result, the client can 

continue to work immediately. When the server has finished the request, it sends the result 

back to the client with another message. 

2.1.5 Message Queues 

Message queues store messages in a FIFO (first-in, first-out) manner. They and are a 

common practice within messaging system and are an important technique to achieve 

asynchronous communication. Queues allow processing messages independently from the 

time when they were stored. For example, when a new message is received, the system puts it 

in a queue and may continue with another task. The application can retrieve the message out 

of the queue at any time in order to process it. Queues may be persistent in order to save 

memory or to provide a higher degree of reliability in case of system failures. They may also 

consider message priorities. Messages with a high priority are retrieved first, although they 

might have been stored after messages with lower priority. 
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2.1.6 Message Filters 

Message filters decide whether messages are relevant within a specific context. If they 

are not, then they do not have to be processed any more in this context. A common 

application of filtering is found in the publisher/subscriber concept. Subscribers may not be 

interested in all messages a publisher sends. Instead of receiving all messages and discarding 

the irrelevant messages, a subscriber may use a message filter. This filter decides which 

messages to send to a subscriber. Because message filters are located at the publisher, they 

avoid network traffic by sending only relevant messages. 

2.1.7 Quality-of-Service Parameters 

Quality-of-Service (QoS) parameters specify additional requirements imposed on a 

service. In the messaging domain, the service is usually the delivery of messages. There are 

various QoS parameters for message delivery. Exactly-once-delivery guarantees that a message 

will reach its destination(s), even in cases of system failures. This requires store-and-forward 

mechanisms: messages are stored persistently before they are forwarded to the destination(s). 

Message priority, a regular used QoS parameter, allows specifying the significance of 

messages.  High priority messages should usually be processed earlier. Another common QoS 

parameter is the expiration time. It specifies the period in which the message is relevant. The 

system can stop forwarding expired messages in order to save resources. 

2.2. Object Oriented, Centralized Messaging Systems 

After basic terms and concepts were clarified in the last section, we begin to review the basic 

architecture and the functionality of object oriented messaging systems. These distributed 
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systems usually have a centralized architecture; decentralized approaches will be reviewed in 

section 2.3. The review of each system is divided into three sections: Overview, Architecture 

and Discussion. The first reviewed system is Microsoft’s Event System, which is part of 

COM+. It is followed by the relatively simple Event Service of CORBA. Due to some 

limitations of the Event Service, the Notification Service was introduced into the CORBA 

world. It is the most complex of the discussed systems in this section. Sun’s Java Message 

Service ends the discussions of centralized approaches. Feature matrixes compare the systems 

to each other and summarize the differences. 

2.2.1 COM+ Event System 

2.2.1.1 Overview 

The COM+ platform, which was introduced with Windows 2000, offers a basic 

distributed event system. It is based on the publisher/subscriber model, and it decouples 

publishers and subscribers by an additional layer between the components. This indirection 

makes the process more complex but also more flexible. For instance, the lifetime of 

publishers and subscribers does not have to be corresponding. Information that is more 

detailed is available at the MSDN Library (MSDN 2001).  

2.2.1.2 Architecture 

The EventClass and the COM+ catalog are positioned between each publisher and its 

subscribers. An EventClass implements an interface, which is used to fire events. The 

publisher registers an EventClass object in the COM+ event store. Subscribers must 

implement the same interfaces and register to the subscription database of the COM+ event 
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store. The EventClass object is persistent. The publisher and subscriber can be made 

persistent, as well.  

 
Figure 1.  COM+ Events Architecture 

The current version of the COM+ event store is not distributed. Subscribers have to 

specify the computer to which they want to register. Thus, location transparency is not 

supported. COM+ offers publisher and parameter filtering. Publisher filtering invokes the 

filter(s) when the event is to be fired. The filters determine which subscribers are notified. 

Parameter filtering allows subscribers to specify filters for parameters of each method. This 

type of filtering is done after the publisher filtering and depends therefore on this preceding 

step. To fire an event, the publisher creates an EventClass object and calls the desired method 

of the event interface. The event system retrieves all the subscribers from the database and 

invokes the method of each subscriber. This can happen serially or in parallel. Parallelism is 

based on multi-threading. Together with the COM+ Queued Components Service, it is 

possible to queue events in order to process them later. However, this requires extra effort as 

a recorder and a player component must be placed between the other components.  
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2.2.1.3 Discussion 

The COM+ system does not support distribution transparently. In COM+, events are 

method calls. The overhead of method calls can be very small depending on the location of 

the communication partners. It may be mapped to a local method call if publishers and 

subscribers are in the same process. This does not require the creation of the event object. 

However, in a distributed environment, this overhead is relatively low compared to preparing 

the data and sending it over the network. Using message objects would be more flexible 

because they can contain data and meta-data without forcing the listener to take care of them. 

If a data field is added to a message class later, the listeners do not have to be adjusted. 

Another advantage is that inheritance can be exploited with message objects. This allows 

subscribers to receive and process events of sub-classes of the class, which they have 

registered for in the first place, transparently. 

2.2.2 CORBA Event Service 

2.2.2.1 Overview 

The motivation for this service is to provide an alternative method for standard 

CORBA calls. This is explained in the “Event Service“ specification: 

A standard CORBA request results in the synchronous execution of an operation by 
an object. If the operation defines parameters or return values, data is communicated 
between the client and the server. A request is directed to a particular object. For the 
request to be successful, both the client and the server must be available. If a request 
fails because the server is unavailable, the client receives an exception and must take 
some appropriate action. 
(OMG 2001) 
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CORBA’s Event Service provides a possibility to communicate asynchronously. 

Events are sent from “Suppliers” to “EventChannels” and further to “Consumers”. This 

indirect approach is similar to the COM+ solution. Both decouple senders from receivers and 

their lifetimes. Besides the push model, CORBA also supports the pull model. However, this 

will not be discussed any further, as it is not in the scope of this section. 

2.2.2.2 Architecture 

The Event Service is a layer on top of ORB system; event delivery is done by ORB 

calls. At a high level view, Consumers register to an EventChannel, to which Suppliers deliver 

events (figure 2). 

 

 

Figure 2.  Basic Model of the CORBA Event Service 

Several other objects are necessary. Firstly, the EventChannel must be obtained from a 

Factory. The EventChannel object offers methods to retrieve so-called CosumerAdmin and 

SupplierAdmin objects. These objects provide access to proxy objects. Depending on their 

usage, they are called ProxyPushSupplier, ProxyPullSupplier, ProxyPushConsumer or 

ProxyPullConsumer. Figure 3 illustrates this architecture. Suppliers are connected to 

ProxyConsumers and Consumers are connected to ProxySuppliers. For example, a push 
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Supplier posts an event by calling the “push” method of a ProxyPushConsumer, which will 

initiate further processing. 

 

 

 
Figure 3.  Architecture of the CORBA Event Service 

 

Events are not objects because the distributed CORBA system does not allow passing 

objects by value. Filtering is not supported directly but may be implemented by developing 

custom EventChannels. Details about the event delivery are not specified: “An event channel 

can support consumers and suppliers using different communication models” (OMG 2001). It 

is up to CORBA implementations how they process events. Multiple events could be 

processed serially, in parallel or using multicasting technologies. 

2.2.2.3 Discussion 

Within the CORBA environment, the distributed Event Service achieves location 

transparency. The concept of factory, admin and proxy objects makes the system flexible. 

There can be different implementations for different purposes, e.g. an optimized proxy for a 

local EventChannel. It is also possible to extend the system by plugging custom objects in. 
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However, this concept is also less intuitive and requires more actions to be taken. Since 

important features, like message filtering, are missing, the developer may use the plug-in 

architecture for extending the service. 

2.2.3 CORBA Notification Service 

2.2.3.1 Overview 

The Notification Service addresses several shortcomings of the Event Service. The 

specification lists additional capabilities: 

1. The ability to transmit events in the form of a well-defined data structure, in 
addition to Anys and Typed-events as supported by the existing Event Service. 

2.  The ability for clients to specify exactly which events they are interested in 
receiving, by attaching filters to each proxy in a channel. 

3. The ability for the event types required by all consumers of a channel to be 
discovered by suppliers of that channel, so that suppliers can produce events on 
demand, or avoid transmitting events in which no consumers have interest. 

4. The ability for the event types offered by suppliers to an event channel to be 
discovered by consumers of that channel so that consumers may subscribe to new 
event types as they become available. 

5. The ability to configure various quality of service properties on a per-channel, per-
proxy, or per-event basis. 

6. An optional event type repository which, if present, facilitates the formation of 
filter constraints by end-users, by making information about the structure of 
events which will flow through the channel readily available. 

(OMG 2000) 

The most important improvements are the introduction of filters and the Quality-of-

Service parameters. 
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2.2.3.2 Architecture 

The basic architecture is the same as the one of the Event Service, which was 

discussed in the previous section in detail. Its goal was to be compatible with its predecessor: 

The main design goal of the Notification Service architecture is to define the service as 
a direct extension of the existing OMG Event Service, enhancing the latter with 
important features which are required to satisfy a variety of applications with a broad 
range of scalability, performance, and quality of service (QoS) requirements. 
(OMG 2000, 2-1) 
 
The Notification Service defined here supports all of the interfaces and functionality 
supported by the OMG Event Service. In fact, an implementation of the Notification 
Service defined here can be thought of as subsuming an implementation of the Event 
Service. The Notification Service, however, also supports new features that are 
introduced by directly extending the interfaces defined by the Event Service. Both the 
original Event Service interfaces, and these new extended interfaces specific to 
Notification, are made available to Notification Service clients in order to preserve 
backward compatibility. 
(OMG 2000, 2-2) 
 

Filters are implemented using the definition language “Extended TCL” (Trader 

Constraint Language). They can be attached to all admin and proxy objects. Various Quality-

of-Service parameters were introduced: reliability, priority, expiration times, earliest delivery 

time, maximum events per consumer, order policy, and discard policy. Another interesting 

concept is “mapping filter objects”, which allows filters to influence Quality-of-Service 

parameters like the message priority. 

2.2.3.3 Discussion 

The Notification Service is very complex and powerful. There are many interesting 

features, but applications may not need all of them. For instance, Quality-of-Service 

parameters, like exactly-once-delivery, increase the overhead and may not be required. 
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Altogether, it shares the complex architecture of the Event Service and overcomes its 

shortcomings. 

2.2.4 Java Message Service 

2.2.4.1 Overview 

The Java Message Service (JMS) is a specification (Sun 2001) developed by Sun. It 

defines only the programming interface and is not an implementation itself. However, Sun’s 

Java 2 Enterprise Edition includes an implementation and further ones are available from 

various vendors. There are two groups of implementations. The first group wraps other 

existing messaging systems and provides a JMS compliant interface to access them, for 

example IBM’s MQSeries (IBM 2002) and Talarian’s SmartSockets for JMS (Talarian 2002). 

The second group consists of native Java solutions and implements the functionality by 

themselves, for example Sonic Software‘s SonicMQ (Sonic 2002) and IIT’s SwiftMQ (IIT 

2002). JMS applications are portable within the bounds of the Java platform: 

The primary portability objective is that new, JMS only, applications are portable 
across products within the same messaging domain. This is in addition to the expected 
portability of a JMS client across machine architectures and operating systems (when 
using the same JMS provider). (Sun 2001, 16) 
 

Java Message Service offers two domains: point-to-point and publisher/subscriber 

messaging. The point-to-point facilities of JMS are not in our scope and are therefore not 

discussed here. Similar to the COM+ and the CORBA services, publishers and subscribers 

communicate indirectly with each other to achieve a higher degree of decoupling. 
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2.2.4.2 Architecture 

JMS has a different approach to establish the communication channel. 

TopicPublishers and TopicSubscribers have to create a TopicConnection and a TopicSession 

explicitly. Both TopicConnectionFactory and Topic objects are acquired via JNDI. With the 

factory, a TopicConnection can be created, which in turn allows creating TopicSession 

objects. TopicPublisher and TopicSubscriber objects are created with the TopicSession and 

the Topic object. A TopicSubscriber can also have a “message selector,” which allows filtering 

near to the publisher. This is done using String, which contains conditional expressions based 

on a subset of the SQL92 standard.  

 

 

Figure 4.  JMS Publisher/Subscriber Architecture 

Publishers and subscribers communicate with Message objects. Messages have a 

common set of header fields, like identifier, destination, timestamp, and priority. Depending 
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on what data type is needed by the application, there are several subclasses of Message: 

BytesMessage, TextMessage, MapMessage, StreamMessage, and ObjectMessage. Both 

subscribers and messages can be made persistent to ensure an exact-once-delivery. Other 

Quality-of-Service parameters are expiration time and message priorities. 

2.2.4.3 Discussion 

The Java Message Service offers important features, but is not as complex as 

CORBA’s Notification Service. Following the specification, implementations can be relatively 

efficient, depending on how the Connection, Session and Message classes are implemented. 

The concepts of Connection and Session allow using techniques like TCP or UDP for 

network communication. This may be more efficient than using RMI or ORB calls because it 

implies lower overhead. However, it depends heavily on the implementation of the messaging 

system, how the network communication is realized. 

2.2.5 Feature Matrixes 

The feature matrixes will summarize and complement the discussion of object 

oriented messaging systems. They give a clear overview of the capabilities of the systems. The 

compared features are separated in groups: General Features, Quality-of-Service parameters, 

and Terms and Concepts. The gathered information is based on the official system 

specifications (OMG 2000, OMG 2001, Sun 2001) and on the MSDN Library for COM+ 

Event System (MSDN 2001). 
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2.2.5.1 General Features 

Table 1 shows the general features matrix. While all systems offer the push 

technology, which pushes messages to interested objects, only the CORBA Services support 

the pull concept, in which clients have to get messages themselves. Filtering is supported by 

every system, except the Event Service. Here, developing customized EventChannels could 

mirror some of the functionality. The Event Service does not require Exactly-once-Delivery 

by its specification. However, some implementations offer this functionality. Transactions are 

supported by all systems. 

 

Table 1.  Messaging systems: general features matrix 

 COM+ 
Event 
Service 

CORBA 
Event 
Service 

CORBA 
Notification 

Service 

Java 
Message 
Service 

Push D D D D 
Pull U D D U 
Filters D U D D 
Exactly-once-delivery 
(Persistent Events and  
Subscriptions) 

D Depends on 
implementations D D 

Transactions D D D D 
 

2.2.5.2 Quality-of-Service Parameters 

Table 2 shows the Quality-of-Service parameter matrix. Depending on the application 

needs, Quality-of-Service parameters (QoS parameters; discussed in section 2.1.7) may be 

crucial. The choice of the parameters is formed by the Notification Service, because it offers 

the most QoS parameters. Both COM+ Event System and CORBA’s Event Service do not 
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offer QoS parameters at all. CORBA’s Notification Service allows assigning QoS parameters 

to every object involved in the messaging process. The Java Message Service offers a subset of 

QoS parameters, and it restricts the use of them to Message objects. However, it offers the 

most common QoS parameters. 

 

Table 2.  Messaging systems: Quality-of-Service parameters matrix 

 COM+ 
Event 
Service 

CORBA 
Event 
Service 

CORBA 
Notification 

Service 

Java 
Message 
Service 

Scope of 
Quality-of-Service 
parameters 

U U 
Channels, Admin objects, 

Suppliers, Consumers, 
Events 

Message 

Reliability U U D D 
Priority U U D D 
Expiration Time U U D D 
Earliest Delivery 
Time U U D U 

Discard Policy U U D U 
Maximum events 
per consumer U U D U 

Order policy U U D U 
 

2.2.5.3 Terms and Concepts 

Table 3 shows the terms and concepts matrix. Although the general concepts are very 

similar, the systems use different terms for the involved elements. The only special issue is the 

message concept of the COM+ Event Service. It is the only system, which has no explicit 

message objects. Instead, a message is seen as a remote method call. 
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Table 3.  Messaging systems: terms and concepts matrix 

 COM+ 
Event 
Service 

CORBA 
Event 
Service 

CORBA 
Notification 

Service 

Java 
Message 
Service 

“Message” - 
(Method 

Call) 

Event 
(Anys and typed 

events) 

Event 
(Anys, typed and 
structured events) 

Message 
(predefined 

classes) 
“Publisher” Publisher Supplier Supplier Topic-

Publisher 
“Subscriber” Subscriber Consumer Consumer Topic-

Subscriber 
 “Topic” EventClass Event Channel Event Channel Topic 

 

2.3. Peer-to-Peer Related Messaging Systems 

2.3.1 Grid Event Service and Narada 

The Grid Event Service (Pallickara 2001) is designed for a large, decentralized network 

of servers. It groups brokers (servers) into a hierarchical cluster topology. If a sufficient 

number of clusters (level 1) is available, they are grouped into super-clusters (level 2), which 

can be grouped into super-super-clusters (level 3) again. The clusters are connected with each 

other multiple times to increase fault tolerance. Clients connect to a broker and may roam to 

another one in case the broker fails, or another broker offers a better (e.g. faster) service. The 

Grid Event Service supports reliable delivery of events by utilizing persistence features. The 

prototype implements the Java Message Service interface, which was discussed in section 

2.2.4. Due to its decentralized topology, the Grid Event Service could be used in a peer-to-

peer network. However, in spite of being a decentralized approach, it bases its architecture on 
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broker and clients. Further, the Grid Event Service does not address heterogeneous networks. 

Therefore, its usability is restricted in peer-to-peer networks. 

Narada (Fox and others 2002, Fox and Pallickara 2002a) is based on the Grid Event 

Service. Like its predecessor, it implements the Java Message Service, as well (Fox and 

Pallickara 2002b). The main extension is the integration with the peer-to-peer platform JXTA 

(see section 2.3.4). While Narada extends its platform to peer-to-peer, it also services JXTA by 

providing an additional message delivery mechanism. The fundamental concept is the 

“Narada-JXTA proxy,” which is both JXTA rendezvous peer and Narada client. The proxy 

forwards incoming JXTA messages to others using the Narada infrastructure.  Therefore, the 

two platforms can interchange messages and collaborate. However, this approach does not 

address improving messaging directly inside peer-to-peer networks. Instead, it utilizes its 

broker infrastructure and offers a bridge to the peer-to-peer network. 

2.3.2 Siena 

Siena (Carzaniga 1998, Carzaniga, Rosenblum and Wolf 2001) is a publish/subscribe 

messaging system based on a content-based networking approach (Carzaniga and Wolf 2001). 

Unlike topic based publish/subscribe systems, the recipients are not identified by group 

membership in Siena. Instead, subscribers receive only the messages (called events in Siena), 

which match a subscriber-specific content pattern called event filters. Events are a set of 

attributes consisting of a type, a name, and a value. These attributes are compared to filter 

constraints, which consist of a type, a name, a value, and an operator. If the event does not 

match a subscriber’s filter constraints, the event will not be delivered to this subscriber. Before 
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publishing events, the publisher will advertise a set of all possible events it will emit.  Thus, 

subscriptions not matching the advertisement do not have to be considered for this publisher. 

Siena’s infrastructure consists of connected server clusters, similar to the approach of the Grid 

Event Service/Narada. However, the topologies of the cluster can vary. Currently, Siena 

supports hierarchical server, general peer-to-peer and acyclic peer-to-peer topologies. 

Although servers can be connected in a peer-to-peer fashion, Siena clearly differentiates 

between dedicated servers and clients. Its usability in peer-to-peer networks is further 

restricted by the lack of failure robustness and heterogeneity considerations. 

2.3.3 Pastry and Scribe 

Scribe (Rowstron and others 2001) from Microsoft Research is a topic-centric 

publish/subscribe messaging system based on the peer-to-peer platform Pastry (Rowstron and 

Druschel 2001). Pastry utilizes routing mechanisms to achieve a greater scalability than earlier 

approaches like Gnutella (Gnutella). Similar emerging peer-to-peer systems are Gridella 

(Aberer and others 2002), CAN (Ratnasamy and others 2001), Chord (Stoica and others 

2001), and Tapestry (Zhao 2001). Each Pastry node stores routing information in a routing 

table containing information about distant peers and a leaf set containing its direct neighbors. 

Scribe depends on Pastry to route messages to their destinations. Topics are accessed with a 

unique ID, which consists of the hash of the topic’s textual name and its creator’s name. 

Scribe elects the Pastry node, whose ID is numerical closest to the topic ID, as the topic 

rendezvous point and root of the multicast-tree. The multicast-tree is created for each topic 

using a mechanism similar to reverse path forwarding (Dalal and Metcalf 1978). Each Scribe 
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subscriber is connected to the root via one or many Pastry connections. These routes include 

nodes, which may or may not be subscribers. A message going to be published is forwarded to 

the multicast-tree root using the Pastry connections, or it may be sent directly if the root is 

known to the publisher. In summary, Scribe forwards messages using the peer-to-peer 

platform Pastry, which is capable of routing. This approach has several disadvantages. It does 

not overcome the limitations of peer-to-peer networks in the messaging domain, which will be 

discussed in detail in chapter 4. Further, the multicasting tree is formed without considering 

efficiency issues. It imposes a higher workload especially to the root and the nodes near to it 

without determining whether they are powerful enough. Overloaded nodes may decrease the 

efficiency for message delivery. Therefore, this system seems limited to applications requiring 

only low efficiency requirements.  

2.3.4 JXTA 

JXTA (JXTA 2002, Sun 2002) is an open all-purpose peer-to-peer platform. The 

protocol is available to the public, and it is independent of any programming language and 

platform. The reference implementation is developed in Java. However, it is currently ported 

to C, Objective C, Smalltalk, and Perl. JXTA is not a messaging system, but there exist some 

analogies to them. In addition to peers, it introduces the concept of rendezvous and peers, 

which offer additional functionalities, like forwarding discovery requests and routing. Both, 

rendezvous and relay peers, have to be set up explicitly. As JXTA is a general network, it has 

to separate peers of a common application. This is done using peer groups. The 

“NetPeerGroup” is a special group that all peers belong to. Nevertheless, peers may 



 26 

participate in any number of other groups. There is also a group authorization mechanism 

evolved, which can be extended to provide one that fulfills individual needs. Other central 

aspects are advertisements, which are based on XML documents and are identified by a 

unique identifier. Each resource, like peers, peer groups, and data resources, is made available 

by publishing advertisements. Peers may look up these advertisements by sending discovery 

messages. The common communication practices are “pipes,” which hide the message 

delivery by the peer-to-peer network from users. The delivery includes routing through the 

peer nodes, and adjusting the route due to node failures. JXTA differentiates between input 

and output pipes, and between unicast and multicast communication. The multicast solution is 

called “propagate pipe,” which allows several peers to listen to it. Pipes like the propagation 

pipe are not reliable; messages may be lost without any notification. To avoid this situation, 

JXTA offers special pipes with a higher degree of reliability. However, these reliable pipes are 

currently restricted to unicast. JXTA is an emerging technology and has to be studied further. 

It has many interesting aspects that still have to prove their usability in practice. However, 

because of rendezvous/relay peers, routing, and caching, JXTA has the potential to become a 

scalable peer-to-peer platform.  

2.3.5 Feature Matrixes 

The feature matrixes in table 4 and 5 summarize and complement the discussion on 

the systems, which are related to peer-to-peer concepts. The first comparison includes general 

criteria, while the second one includes conceptual group communication aspects especially 

relevant in peer-to-peer networks. 
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Table 4.  Peer-to-Peer Related Systems: General Characteristics Matrix 

 Grid Event 
Service/Narada Siena Pastry/Scribe JXTA 

propagate pipe
Scalability 
increasing 
measures 

Routing, Clustering Routing, 
Clustering 

Routing, trees for 
each topic 

Routing, 
separation of 
peer groups 

Reliable 
message 
delivery 

Exactly-once-
delivery 

Not 
considered 

Messages may be lost 
because of single 

node failures 

Messages may 
be lost for any 

reason 
Quality-of-
service 
parameters 

Reliability, priority, 
expiration time U U U 

Message filters D D U U 
 

The discussed systems share common measures to increase scalability: routing and 

dividing the network in more manageable units. Grid Event System (GES)/Narada is the only 

system that provides reliable message delivery and Quality-of-Service parameters. The other 

systems do not support Quality-of-Service parameters and different degrees of reliability: 

Siena does not consider node failures at all, Pastry/Scribe delivers messages reliable, but may 

drop messages when a single node fails, and JXTA’s propagate pipe is by definition unreliable. 

Message filters for individual subscribers are a fundamental concept of Siena, but also 

GES/Narada supports them. 
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Table 5.  Peer-to-Peer Related Systems: Group Communication Characteristics Matrix 

 Grid Event 
Service/Narada Siena Pastry/Scribe JXTA 

propagate pipe 
Topology 

Broker clusters Hybrid 
clusters 

Tree built on 
peer-to-peer 

network 
Peer-to-peer 

Group formation  Topic 
subscription 

Content 
based 

Topic 
subscription 

Peer group 
membership, 

propagate pipe  
Node roles Brokers and 

clients 

Servers 
and 

clients 
Peers 

Peers, 
rendezvous/router 

peers 
Multicast messages 
traverse only 
nodes in the group 

U U U U 

Heterogeneity of 
nodes considered  U U U U 

Adjustment to 
node failures Client roams to 

another broker U 
Local 

restoration of 
subscriptions 

(Insufficient 
information 

available) 
 

The feature matrix presented in table 5 illustrates characteristics, which are particularly 

important in peer-to-peer networks as they impose special requirements. The Narada and 

Siena establish cluster topologies, while Pastry and JXTA establish peer-to-peer topologies. 

Scribe creates multicast trees on top of Pastry’s network. Groups are formed by topic 

subscriptions in GES/Narada and Scribe, whereas Siena does not work explicitly with groups. 

Instead, groups may evolve in Siena’s content based network by similar subscription filters 

that match a common set of publish advertisements. JXTA has two explicit group 

communication principles, the peer groups and the propagate pipe. Both, GES/Narada and 

Siena, are not peer-to-peer networks, as they differentiate between brokers/servers and clients. 

The peer-to-peer platforms Pastry/Scribe and JXTA do not impose this differentiation, 
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although JXTA relies on rendezvous/router peers, which take care of additional tasks. None 

of the presented systems adjusts its network in order to avoid traversing nodes, which are not 

part of a group. The additional traversed nodes slow down the delivery process. Further, none 

of the systems considers heterogeneity among the nodes, which is typically found in peer-to-

peer networks. Adjustment to node failures is handled differently by each system. If message 

broker fails in GES/Narada, the broker’s clients can roam to another broker. Pastry/Scribe 

handle failures by repairing the multicast tree: failed parent nodes require their child nodes to 

renew their subscription at a new node higher in the tree hierarchy. Siena does not support 

repair mechanisms. As JXTA is not completely documented, the available information was 

not sufficient to determine its character regarding node failures. 

The feature matrixes showed that the peer-to-peer related systems do not provide 

optimal solutions for group communications. Despite their scalable characters, GES/Narada 

and Siena are not intended as peer-to-peer systems. The peer-to-peer networks Pastry/Scribe 

and JXTA lack general features, and do not consider several characteristics of peer-to-peer 

networks. 

2.4. Summary 

This chapter introduced basic principles, a comparison of common messaging systems 

in the object-oriented middleware domain, and emerging peer-to-peer approaches. The first 

major part of this chapter reviewed messaging systems related to object-oriented middleware. 

We discussed the COM+ Event Service, which is part of Windows. Then, we looked at two 

CORBA solutions: the simple Event Service and the powerful Notification Service. The Java 
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Message Service, which is implemented by many systems, offers important features. These 

systems were compared in feature matrixes. The second major part of the chapter investigated 

related work in conjunction with the peer-to-peer domain. We discussed the messaging 

systems Grid Event Service, its predecessor Narada, and Siena. All of them are based on 

scalable server clusters, but none of them reflects the pure peer-to-peer concept. Scribe is built 

on the peer-to-peer platform Pastry, but has efficiency issues due to the formation of its 

multicast tree. JXTA, an all-purpose peer-to-peer platform, allows the formation of peer 

groups and multicast communication. Lastly, the peer-to-peer related systems were compared 

in feature matrixes, which revealed that they share deficiencies in the peer-to-peer domain. 
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CHAPTER III 

A SERVER-LESS MESSAGING SYSTEM 

In this chapter, a prototype of a messaging system will be built. Concepts, models and 

algorithms will be presented and alternatives will be discussed. After defining the 

requirements, we will describe the basic model from a high-level view. Then we will discuss 

important concepts in detail.  The focus is set to messages, and how they are transmitted to 

their destinations using various concepts. In the end, results will be discussed. 

3.1. Requirements 

The motivation is to create a server-less and high performance messaging system build 

on the publisher/subscriber model. Based on these fundamental principles (requirements 1-3), 

we can refine and extend the requirements (requirements 4-9). 

1. Publisher/subscriber concept  

2. Server-less network architecture 

3. Emphasis on high performance 

4. Message filtering for each subscriber near to the publisher in order to save 
unnecessary network traffic. 

5. Event priorities. Events with a higher priority will be delivered sooner than events 
with a lower priority. 

6. Allow different types of connections in order to allow efficient communication 
depending on the environment. 

7. Utilize low-level connection types like TCP, UDP and intra-process to reduce 
overhead to a minimum. 
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8. A Quality-of-Service parameter to distinguish between essential and non-essential 
events. Not essential events may be lost during transportation. This allows network 
optimization, for instance using UDP instead of TCP. 

9. Allow new connections types to be plugged into the system in order to allow adjusting 
to changed environments efficiently. 

 

3.2. Extended Publisher/Subscriber Model 

This section illustrates basic concepts, and addresses fundamental problems and 

alternatives. The scenario is based on a topic-centric publisher/subscriber model. A publisher 

sends messages associated to a topic. Interested objects can subscribe to a topic, receive 

messages from a topic and unsubscribe from a topic. For some applications, it may be 

necessary to send messages back to the publishing application. We will investigate in this 

practice because it may result in an efficient solution for two-way communication. The 

message system architecture has to provide an extended publisher/subscriber model concept, 

which is shown in figure 5. The publishing peer initiates the delivery process, and receives 

feedback messages. Subscribing peers on different machines, receive the published messages, 

delivered by the messaging system. In addition, peers may send feedback messages back to the 

publishing peers, as illustrated by “Subscribing Peer2” in the figure. 

 
Figure 5.  Extended Publisher/Pubscriber Model 
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3.2.1 Potential Solution: pure Publisher/Subscriber and a Feedback Topic 

A conceptual model, which uses solely the Publisher-Topic-Subscriber model, is 

shown in figure 6. In order to receive feedback messages from the subscribers, a second 

Topic, the “FeedbackTopic” has to be created. Topic subscribers have to become publishers 

to the FeedbackTopic in order to send the feedback messages. 

 

 
Figure 6.  Feedback Topic Conceptual Model 

The advantage is that a common method for both ways of communication can be 

utilized, which requires no extra development effort. However, the disadvantages are serious. 

Firstly, there are two connections needed, which may result in less efficient usage of network 

facilities. For example, it would require two TCP sockets for each connection and peer. This 

requires more resources and ignores the more efficient full-duplex capabilities of TCP 

connections. Secondly, the FeedbackTopic does not match the typical publisher/subscriber 

configuration, as there is only one subscriber, but many publishers. This may lead to 

inefficient communication, because the model is primarily intended to have a small number of 

publishers and a big number of subscribers. 
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3.2.2 Potential Solution: Publisher/Subscriber with ReturnChannel Extension 

An alternative is shown in figure 7. Here, Subscribers have a direct feedback 

opportunity through a ReturnChannel. This allows sending messages back using the Link, 

which is used for receiving messages. The publishing application may attach to the 

ReturnChannel associated with the Topic in order to process the feedback. 

  
Figure 7.  ReturnChannel Conceptual Model 

This has several advantages compared to the first approach. Firstly, a link can be used 

for both communication directions. This saves resources and can be more efficient; for 

example, it exploits the full-duplex facility of TCP sockets. Secondly, there is no (network) 

Link between the publishing application and the Topic necessary. This simplifies the 

infrastructure on the publishing machine. Further, it allows a more efficient way to 

communicate because no additional layer is needed. Lastly, it preserves the conventional 

publisher/subscriber configuration (small number of publishers and a big number of 

subscribers). The only disadvantage is that a further concept, the ReturnChannel, has to be 

implemented. 
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3.2.3 Decision: ReturnChannel Extension 

Offering a ReturnChannel is the better approach. It is more efficient because one 

Connection can be used for both communication directions. This supports the primary goals 

for the component: efficiency and low overhead. Further, it offers a more intuitive and easier-

to-use approach for sending feedback. 

3.3. Concepts and Models in Detail 

3.3.1 Messages 

Messages are data units, which are actually published and sent to the interested parties. 

The goal is to offer an efficient message representation while sticking to the object-oriented 

paradigm. In this prototype, a message may be any Java object, as long as it can be serialized. 

A message can have metadata, as “message priority” or “message transmission time.” One 

possibility to implement the metadata is to define header fields common to all messages. This 

is done by Java Message Service (discussed in the last chapter). However, this implies 

overhead, and an application may not need all of these header fields every time. An 

application should have the choice which metadata it needs. The proposed solution is based 

on Java interfaces. There are several interfaces offered, which messages can implement 

depending on individual needs. Each interface is related to a piece of metadata. For example, a 

message that implements the interface “HasPriority” in order to make use of message priority 

features. The possible interfaces and the associated fields are shown and described in Table 4. 

By using solely the needed interfaces, the overhead related to metadata is kept to a minimum. 

The system processes only the metadata, which is needed by the application.  
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Table 4.  Message Interface Types and their Fields 

Interface Field Set by Description 
HasSendTime SendTime Sender, adjusted by 

the receiver 
Timestamp when the 
message was sent 

HasSendTime TimeSinceSend Dynamic by the 
message 

Milliseconds since the 
message was sent 

HasEssentialFlag Essential User Flag whether the 
Message is essential 

HasAcknowledgement AcknowledgeMode User Determines whether 
the message has to be 
acknowledged 

HasPriority Priority User Message priority 
 

3.3.2 Connections 

While initialization and maintenance procedures use RMI, a generic connection 

concept is used for the actual message delivery. This allows staying independent from 

implementation aspects of connections and allows plugging in new connection types. It also 

allows using more efficient communication methods than RMI. The build-in connection types 

are local, TCP and UDP. The local type can be only used when both connection participants 

reside in the same Java virtual machine. Every connection type implements the Connection 

interface.  This interface is presented by Table 5. 
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Table 5.  Fields of the Connection interface 

Field Description 
isReliable() Flag whether this connection offers reliable 

communication 
getAlias() A String to identify the Connection, e.g. 

“TCP”, “UDP”, “RMI”, “CORBA”, 
“LOCAL” 

send(Object msg) Sends a message 
setReceiver(MessageReceiver receiver) Sets the message receiver, which will be 

called when an event arrives 
setLatency(int latency) During the initialization, the latency is 

determined and set by the system 
getLatency() Latency in milliseconds 

 

3.3.2.1 Connection Wrapper Concept 

Connection wrappers help creating full functional connections. Developers, who want 

implement new connection types, can use them to reduce their programming effort. The 

wrappers provide basic functionality, which can be reused for several connection types. The 

system depends on queued connections capable of sending and receiving objects. However, it 

is possible to construct less functional connection types and put the necessary wrappers 

around them. The available types and wrappers are illustrated by figure 8. 

The StreamConnection type does not offer sending Objects. Instead, it offers low-

level Input- and OutputStreams for sending and receiving already encoded messages. The 

wrapper class StreamConnectionWrapper can be used with a StreamConnection. It encodes 

and decodes Messages and delegates the sending and receiving to the attached 

StreamConnection. The wrapper implements the Connection type, which sends and receives 
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objects, but it does not queue messages. Queuing can be added to Connection types with the 

QueuedConnectionWrapper.  

 
Figure 8.  Connection Types and Wrappers 

3.3.2.2 Connection Initialization 

In the initialization phase, the two communication partners, publisher and subscriber, 

have to agree on what Connections can be used. It is possible that one party cannot offer all 

types of Connections, for example, UDP could be blocked by a firewall. The next step is to 

create the infrastructure needed by the Connection, e.g. TCP sockets. After establishing the 

Connections on both communication sides, the Connection is evaluated by sending 

supervisory messages to determine the latency. The complete initialization process is shown in 

figure 9, in which the two objects on the remote machine are positioned on the right side. 
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Figure 9.  Connection Initialization Sequence 
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3.3.3 Links: Multiple Connections 

A Link consists of multiple connections between the two communication partners. 

The concept of using multiple connections allows choosing an optimal one for specific needs. 

For example, an unreliable UDP connection can be used for transmitting non-essential 

messages, while a reliable TCP connection is used for transmitting the essential ones. Another 

application for this concept could be to differentiate between sensitive and insensitive 

messages, which require either slow and secure, or fast and insecure connections. 

3.3.3.1 Algorithms for choosing a Connection 

Introducing multiple connections leads to the question, which connections should be 

used for which messages. The selection method should not depend on any connection type 

and should allow working with connections, which were plug-in by the user. This connection 

selection can depend on several parameters: the message type, Quality-of-Service parameters, 

connection negotiation results from the initialization phase, and user settings. There are 

several algorithms possible, which have to be considered: 

1. ConnectionSelector. The ConnectionSelector makes the decision. If another behavior 
is needed, a new ConnectionSelector must be plugged in.  

2. Ask Connections. A ConnectionSelector asks the available Connections whether they 
are suited to send a specific Message. However, it is difficult to choose one if more 
then one Connection is suited. Another drawback is that the behavior is hard-wired 
into the Connections. 

3. Self-describing Connections. Connections have parameters like reliability, latency, 
data-overhead and speed. The system chooses the most appropriate connection by 
itself. This approach offers a great flexibility, but it is also relatively complex. In 
addition, it does not allow the user to adjust the behavior to specific needs. A similar 
approach would be the “Sponsor-Selector” pattern (Martin 1998). 
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4. Connection Priorities. The Connections have priorities. The Connection with the 
highest priority is selected. It would be easy to plug-in new Connections, but the 
behavior is tied to the Connection. 

5. Lists of preferred Connections. The ConnectionSelector has lists, which store the 
Connections ordered by how well they suit the needs. The user can modify the list if 
this is needed for special purposes. In addition, the user is forced to update at least 
one list when adding a new Connection. 

6. Evaluate Connections. After the Connections are setup, the Connections are 
evaluated. For example, the roundtrip time could be determined. Based on that 
information the optimal Connection could be selected. 

7. Combinations. There is also a variety of combinations possible. For instance, a default 
ConnectionSelector, which can be replaced, could evaluate the Connections and create 
a default list of preferred Connections, which could still be modifiable by the user. 

3.3.3.2 Chosen Algorithm: ConnectionSelector Combination 

The probably most important influence for the decision is whether the Message has to 

be delivered reliable by the network or not. Therefore, it makes sense to pre-select the 

Connection depending on this parameter. The “Evaluate Connections” principle seems the 

most appropriate solution because it emphases the efficiency goal of the Message Component 

and it makes it easy to plug-in new a Connection into the Component. To meet other 

application needs, a plug-in mechanism for a new ConnectionSelector will be supported. 

3.3.3.3 Link Initialization 

The link initialization process (figure 10) requires several steps. After setting up the 

basic Link objects on the local and the remote side, the connections have to be initialized. The 

connection initialization was discussed in the last section. Successfully initialized connections 

are added to the Link objects on both local and remote sides. 
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Figure 10.  Link Initialization 
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3.3.4 Message Delivery 

3.3.4.1 Publishing and Filtering Messages 

The process of publishing messages is shown in figure 11. The application passes the 

message to a Publisher object. The Publisher has a list of all subscribers and delivers the 

message to all of them. The Publisher itself does not know which subscribers are at a remote 

location. Subscribers on a remote machine are represented by RemoteSubscribers. A 

RemoteSubscriber is a proxy, which hides the remote behavior. It passes the message to the 

Link, which adjusts the message fields and passes the message to the chosen Connection. The 

Connection simply puts the message in a queue at this time to let the application continue 

with its work. The Connection has its own sender thread, which will retrieve messages from 

the queue and sends them sequentially to the remote Connection object. 

Message filtering is involved in the publishing process, as well. Filters allow sending 

only the messages, in which a specific subscriber is interested. This is an important 

optimization, because network traffic can be avoided, which results in saving bandwidth and 

processing power. One approach could be a to use logical expressions based on text 

definitions, as applied in Java Message Service (Sun 2001, 37-43). However, we chose to use 

Java objects as filters, since they allow a greater flexibility and performance. Each subscriber 

can send a filter object to the publisher. During the publishing process (figure 11), the 

publisher will ask each filter object whether a message should be sent. 
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Figure 11.  Publishing Messages 

3.3.4.2 Receiving Messages 

The process of receiving messages is shown by figure 12. When a message arrives 

from a remote Connection, it will be passed to the Link object. The Link will adjust message 

fields and passes the message further to its MessageDelivery object. The message is simply put 

in a queue at this time to allow the Connection and Link to continue with their work. The 

MessageDelivery is a thread on its own, which retrieves messages from the queue and delivers 

them sequentially to the subscribing application. 
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Figure 12.  Receiving Messages 

 

3.3.4.3 Encoding/Decoding Messages 

Connections receive and send Message objects. If both end-points reside in the same 

process (virtual machine), they can pass the object directly. However, it is more common that 

they reside on different physical locations or at least in different processes. Two different 

processes cannot share references to objects directly. Therefore, other approaches are needed 

to communicate with remote partners. One approach would be to use RMI and Serialization. 

However, techniques that are more efficient have to be used in order to achieve high 

performance. Candidates are TCP and UDP. These techniques require message objects to be 

encoded into data streams or byte arrays. This can be done using Java’s Serialization and 

Externalization mechanisms. Objects could be written with “writeObject” from 

“ObjectOutputStream” and read with “readObject” from “ObjectInputStream”. This 

approach is easy-to-use, however it does not provide ideal performance. Especially 
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Serialization implies a performance and data overhead. That is the reason for introducing the 

MessageEncoder and MessageDecoder concept to offer a fast alternative to Java’s 

Serialization.  

MessageEncoder/MessageDecoder will be used to encode and decode messages to or 

from a stream. The stream can be a TCP stream or a ByteArrayStream for UDP. To allow 

multiple encoder/decoder pairs, they have to be identified with a unique ID. When messages 

are encoded, this ID will be communicated ahead of the actual encoded message data. In this 

way, the other communication side knows which decoder can be used to process the incoming 

data. This technique implies that both communication sides share the same ID for the same 

encoding/decoding mechanism. The next question is which encoder should be used to 

process a message. There are some alternatives: 

1. The message implements a tagging interface. Each interface is associated with an 
encoder. The system will analyze the Message type, for example with instanceof, to 
retrieve the MessageEncoder. However, this would affect all sub-classes of a tagged 
message. It would force all sub-classes to be encoded with the same MessageEncoder. 

2. The message knows the MessageEncoder ID, which will be mapped to a 
MessageEncoder object. Thus, each message object can decide, which 
MessageEncoder is used. However, it ties the Message to a MessageEncoder ID. 

3. The message has its own MessageEncoder. However, this requires the message to 
handle the creation of MessageEncoder itself.  

An appropriate solution seems to be a combination of alternatives 1 and 2. Messages, 

which have a special encoder, will implement an interface. Those messages will be asked by 

the system about the MessageEncoder ID. Because this is done by a method call and not by a 

type check, this behavior is dynamic and can be changed by sub-classes. This concept does 

not require any extra work for creating new message types if no special encoding/decoding is 
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necessary. In this case, the default MessageEncoders/MessageDecoders can be applied. They 

will offer a general solution to encode/decode Java Objects because they are using the 

standard Java Serialization/Externalization procedures.  

3.3.4.3.1 MessageEncoder/MessageDecoder Model 

Figure 13 shows an UML class diagram of the classes, which are involved in the 

encoding/decoding procedure. The interface UseCustomMessageEncoder can be 

implemented by messages, for which a special encoder/decoder pair exists. There are two 

concrete implementations of the interface MessageEncoderDecoder. SerializationMessage-

EncoderDecoder is based on Java’s Serialization and is the default mechanism used to process 

messages. ComponentMessageEncoderDecoder is used for message types, which are offered 

by the system. It implements a faster encoding/decoding mechanism. The MessageEncoder-

DecoderStore is used to manage the available MessageEncoderDecoders. All 

MessageEncoderDecoder have to be registered at this object before they can be used. The 

MessageWriterReaderImpl class provides functionality to write and read messages to or from 

streams. Internally, it fetches the necessary MessageEncoderDecoder object from the 

MessageEncoderDecoderStore depending on the message and delegates the process to it. 
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Figure 13.  MessageEncoder/MessageDecoder Architecture 

3.4. Discussion on the Prototype 

A prototype was implemented based on the concepts presented in this chapter. It was 

called “JMessaging “. It is intended as a proof-of-concept of the server-less messaging system 

approach. Further, experimental performance benchmarks were made using this prototype to 

evaluate the high performance approach. These benchmarks will be presented in chapter VI. 

3.4.1 Strengths 

The resistance to use a traditional messaging system is relatively high outside corporate 

systems because they require special services, which have to be deployed and maintained. The 

presented messaging system addresses several of those issues and tries to differentiate itself 
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from existing messaging systems, like Java Message Service implementations. It has features, 

which are not typical for most existing messaging systems: 

1. Server-less network architecture 

2. Designed and optimized for high performance 

3. Extensible 

4. Supports local communication 

5. Easily deployable 

It does not need dedicated servers and does not rely on additional services (e.g. 

CORBA and its Event Service), except a Java virtual machine. The server-less approach makes 

JMessaging suitable for Peer-to-Peer applications. JMessaging’s high performance will be 

demonstrated in chapter VI. It is also extensible by offering plug-in points. New concepts, like 

new connection types can be added to the system. JMessaging supports a special local 

connection type, which makes it useable for non-distributed applications. It can be deployed 

easily, since nothing has to be configured and no service has to be added. 

3.4.2 Main Weakness: Scalability 

Experimental benchmarking could proof that JMessaging is very fast for two 

communication partners. This demonstrates that the system uses available resources 

effectively. However, the performance depends highly on the number of subscribers a 

publisher has. With a growing number of subscribers, the throughput decreases 

proportionally. In short, it is not scaleable. This may be appropriate for communication in 

small and medium-sized groups, but it is not usable in large ones. 
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3.5. Summary 

During this chapter, we illustrated important parts of the analysis and design phase of 

the development. Alternatives were pointed out and design decisions were made in order to 

meet the requirements. A prototype was implemented in Java based on the presented 

concepts. We pointed out its strengths and weaknesses. Although the messaging system 

differentiates itself from existing messaging systems by following other approaches, scalability 

is a problem for large groups. This can be critical especially in peer-to-peer networks. Those 

networks are theoretically not limited in the number of peers, which results in potential large 

group sizes. In order to serve large groups as well, another network topology is needed. The 

next chapters discuss topology alternatives and address scalability issues. 
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CHAPTER 4 

NETWORK TECHNIQUES 

This chapter discusses potential solutions for scalable messaging systems. First, we 

investigate two multicasting techniques: IP and application layer multicasting. Although these 

multicasting techniques offer efficient group communication, we point out that both have 

disadvantages in the messaging domain. Then, we explore network topologies starting with 

the Publisher/Subscriber topology, which is currently used by our messaging prototype. The 

centralized topologies, Message Server and Message Router, follow. Finally, the decentralized 

topologies, Peer-to-Peer and Peer Cluster, are discussed. 

4.1. Motivation 

The scalability of the prototype presented in the last chapter is restricted. Since the 

machine on the publisher side serves all the subscribers, its workload is multiplied by the 

number of subscribers. This chapter begins with the investigation of how scalability can be 

improved. Potential solutions for a scalable system are multicasting and modifying the 

network topology.  

4.2. Multicasting and messaging 

Multicasting provides an efficient way for sending data to many destinations. This 

seems to be a suitable communication method for publisher/subscriber applications due to 

the similar approach. We will take a closer look at IP and application layer multicasting to 

determine whether they are appropriate for messaging systems. 
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4.2.1.1 IP Multicasting 

IP multicasting (Deering 1989) is a one-to-many datagram communication method 

based on multicasting groups. Once a client joins a multicasting group, it receives the data sent 

to this group. As this is a network layer solution, it is very efficient when multicasting routers 

(mrouters) are used.  Due to its similarity to the publisher/subscriber model, it is a common 

technique for messaging systems operating inside LANs. However, IP multicasting did not 

become common practice for Internet-scale applications due to: 

1. Not all routers in the Internet are capable of multicasting. 

2. The address space for multicasting groups is limited to 28 bits with IPv4.  IPv6 
(Deering and Hinden 1998) extends this to 112 bits (Hinden and Deering 1998). 
However, IPv6 will take time to be widely established. 

3. Dynamic creation of multicasting groups is difficult.  

4. Multicasting protocols (IP and UDP) are unreliable and have no congestion control. 

5. No security features. For example, it lacks of authentication (sender and receiver), 
access control, and secure connections. 

6. Lack of Quality-of-Service parameters. 

There are several efforts, being made to improve IP multicasting, but there is still no 

solution, which is widely used. Examples for these approaches are SRM (Floyd and others 

1995), RMTP (Lin and Paul 1996), and RMX (Chawathe, McCanne, and Brewer 2000). 

4.2.1.2 Application Layer Multicasting 

To overcome the conceptual limitations of IP multicasting, another approach recently 

emerged: application layer multicasting. This software solution usually establishes an overlay 

network: a virtual network over an existing physical network. When data is multicasted, the 
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nodes of the overlay network forward it to each other. Depending on the topology, a routing 

algorithm may or may not be required. 

An example of this approach is Overcast (Janotti and others 2000). It supports only 

single-source multicasting, while multicasting from more than one sender is not supported 

directly. It uses HTTP as the network protocol and can therefore be used to download 

software or video streams using a web browser. Overcast differentiates between content 

delivering “overcast nodes” and end user web clients, which access one of the overcast nodes. 

Clients whishing to join the multicast, first connect the root of Overcasts’ tree topology. The 

root manages global network information and redirects clients to appropriate overcast nodes. 

The overcast nodes form a tree with the root as a central control point. Nodes, which want to 

join the tree, attach to the root. However, this position is just temporary; nodes will evaluate 

other positions periodically. Overcast’s single criterion for optimizing the topology is 

bandwidth; latency is considered as less important. Each node tries to get further away from 

the root while preserving the bandwidth. Nodes check whether one of the other child nodes 

of its parent node offers a similar bandwidth. In this case, the node will relocate under the 

child node. However, nodes will also consider relocating under their grandparent nodes, if it 

would result in a better bandwidth. In addition, if parent nodes fail, nodes will contact their 

grandparent nodes. Overcast also makes use of permanent storage to archive multicasted 

content. This allows clients to access content independently from the time it was multicasted 

initially. Other examples of application layer multicasting are: Hypercast (Liebeherr and Nahas 

2001), ALMI (Pendarakis and others 2001), Bayeux (Zhuang and others 2001), End System 

Multicast (Chu, Rao, and Zhang 2000), and Scattercast (Chawathe 2000). 
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4.2.1.2.1 Messaging Systems and Application Layer Multicasting 

Although application layer multicasting does not have the problems of IP multicasting 

in Internet-scale applications, messaging systems do not currently exploit this concept. One 

approach could be to build a messaging system on top of an existing application layer 

multicasting system. However, messaging systems require broader functionality. In particular, 

they should take care of various Quality-of-Service parameters like message priority and 

expiration time. Those parameters influence the message distribution process directly. 

Messages with high priorities are forwarded earlier than messages with low priorities in 

concurrent situations. In addition, expired messages do not have to be forwarded any further 

in order to save resources. Handling of Quality-of-Service parameters has to be in the overlay 

network layer in order to be efficient. Therefore, our solution, which will be presented in the 

next chapter, will consider Quality-of-Service parameters directly.  

4.3. Topologies 

Another approach to achieve scalability is addressing the topology. The topology 

defines how network nodes are connected to each other. Starting with the 

publisher/subscriber topology of our messaging system prototype, we will investigate in 

existing topologies in the messaging and peer-to-peer domain. We will describe their concepts 

and point out their advantages and disadvantages in order to see how suitable each topology is 

for messaging in peer-to-peer environments.  
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 During the discussions, the focus lies on the publisher/subscriber messaging model. 

The centralized architectures are widely utilized for messaging within enterprise domains. In 

contrast to these, peer-to-peer networks are based on a decentralized topology. However, they 

were not intended for messaging purposes. This results in a mismatch of current peer-to-peer 

topologies and messaging applications. In the next chapter, we will solve this problem and 

propose a new topology, which aims to overcome the weaknesses of the presented topologies. 

The discussed topologies are not the only ones possible; further topologies are 

discussed for example in “Architectures for an Event Notification Service Scalable to Wide-

area Networks“ (Carzaniga 1998).  

4.3.1 Publisher/Subscriber 

The messaging system prototype of the last chapter used the Publisher/Subscriber 

topology (figure 14). It applies the publisher/subscriber messaging concept at the network 

level. Each subscriber machine connects to the publisher machines, which offer a topic of 

interest. It depends on the application whether this results in a centralized (a few publishers 

serving many subscribers) or decentralized (many publishers serve a small number of 

subscribers) topology. A single-publisher configuration can be compared to server 

architectures, while a multiple-publisher configuration can be highly decentralized.  
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Figure 14.  Publisher/Subscriber Topology 

One of the advantages to the Publisher/Subscriber topology is that no servers or 

routers are involved. Because messages are delivered directly from the source, this approach 

can be more efficient than indirect ones. 

One of the disadvantages is the limited scalability: each publisher can have only a 

limited number of subscribers, because the publishing machine has to serve them all. 

Furthermore, discovery of publishers and subscribers is difficult, as there exists no central 

control unit that the nodes could query. Lastly, there are lifetime dependencies; for example a 

subscriber requires a publisher to be present in order to receive its messages. 
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4.3.2 Message Server 

The Message Server topology (figure 15) is a traditional Client/Server approach; 

clients connect to a central server to request services. Clients may be publishers, subscribers, 

or both. When a client publishes a message, it posts a corresponding request to the server. 

The server delivers the message to subscribing clients. 

 
Figure 15.  Message Server Topology 

 

One of the advantages to the Message Server topology is the simplicity of this 

architecture, which makes it easy to manage and control. Further, it takes workload and 

responsibility off the client. 
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One of the disadvantages is the single point of failure, as the whole system relies on a 

fully functional server. In addition, a powerful server is required, depending on the expected 

workload. Lastly, scalability is limited because this is a single machine approach.  

4.3.3 Message Router 

The Message Router topology (figure 16) addresses the problems of the Message 

Server architecture. It is still a centralized approach because a router usually serves a big 

number of clients. However, the routers are connected with each other and divide tasks 

collaboratively.  

 
Figure 16.  Message Router Topology 
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One of the advantages to the Message Router topology is scalability: routers can be 

added when the workload is getting too high for the existing routers. Like the Message Server 

architecture, it takes workload and responsibility off the client. This architecture is failure 

tolerant as other routers can take over work of non-functional routers. In addition, it allows a 

more efficient communication than server-based approaches because routers can be placed 

close to clients. 

One of the disadvantages is that dedicated routers are needed. Further, maintaining 

multiple routers requires a higher administrative effort. 

4.3.4 Peer-to-Peer 

The peer-to-peer topology (figure 17) is fully decentralized. Each network node is 

considered a peer, which has one or more connection to other peers. Simple peer-to-peer 

networks, like Gnutella (Gnutella 2000), forward messages to every peer. Recent approaches, 

like Pastry (Rowstron and Druschel 2001), implement routing mechanisms to prevent message 

flooding. 
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Figure 17.  Peer-to-Peer Topology 

One of the advantages to the peer-to-peer topology is that no central servers or 

routers have to be involved. It allows a great number of network nodes, because connections 

and workload are shared among the peers. 

One of the disadvantages is that latency is usually high, because messages have to 

traverse multiple peers. In addition, performance is degraded by slow peers, which are on the 

route. The bandwidth of each peer is partially consumed by traffic caused by other peers. 

Networks, which do not support routing, also have scalability problems, because bandwidth 

may be consumed by message flooding (Portmann and others 2001). Message flooding is 

caused when peers have to forward messages to all neighbor peers, since there is no 

knowledge about which peers actually need a message. 
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4.3.5 Peer-to-Peer Clusters 

The Peer-to-Peer Cluster topology (figure 18) is a newer approach. It addresses 

problems of a pure peer-to-peer network in the messaging domain by applying a divide-and-

conquer strategy. The network is divided into clusters, which have knowledge of the peers. 

For example, a cluster could know which peers are subscribers. In this way, a message can be 

routed efficiently inside the cluster. If there is no subscribing peer inside a cluster, the message 

does not have to traverse the cluster (cluster number 2 in the figure). 

 
Figure 18.  Peer-to-Peer Cluster Topology 

The same advantages of the peer-to-peer topology apply to this modified one. 

The disadvantages are similar to the peer-to-peer topology. Latency is high, 

performance is low, and a peer’s bandwidth is partially consumed by traffic of other peers. 
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However, clustering helps to improve these issues as unnecessary traffic and message flooding 

can be largely avoided. 

4.4. Summary 

During this chapter, we analyzed network technologies, which were candidates for 

solving scalability problems. IP multicasting is still impractical due to problems related to 

control and manageability. Application layer multicasting overcomes some of these issues but 

still lacks quality-of-service parameters, which are needed for messaging systems. We also 

investigated several network topologies: Publisher/Subscriber, Message Server, Message 

Router, Peer-to-Peer, and Peer-to-Peer Clusters. Each topology had advantages and 

disadvantages, and none is an optimal choice for scalable peer-to-peer messaging. The next 

chapter addresses this deficiency and proposes a solution based on a new topology. 
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CHAPTER 5 

THE P2P MESSAGING SYSTEM AND 

THE MULTI-RING TOPOLOGY 

This chapter presents the P2P Messaging System and the novel multi-ring topology, 

which is designed to meet requirements for high performance group communication in large-

scale peer-to-peer networks. In the previous chapter, we investigated multicasting techniques 

and network topologies and pointed out their disadvantages in the peer-to-peer messaging 

domain. We showed that IP multicasting has several serious weaknesses, making it unusable 

for our purpose. Application layer multicasting lacks Quality-of-Service parameters, which are 

needed by messaging systems. The solution presented in section 5.2.1 is based on a topic-

centric application layer multicasting, which takes care of Quality-of-Service parameters 

directly. Building overlay networks for each topic makes the message delivery independent 

from the peer-to-peer network and overcomes its constrains. The previous chapter illustrated 

the mismatch of messaging topologies and peer-to-peer networks: current messaging 

topologies are centralized, and decentralized peer-to-peer topologies are not efficient for 

messaging applications. Now, we address this mismatch with the multi-ring topology. It aims 

to combine the robustness and manageability of ring topologies (section 5.2.2.1) and the 

scalability of tree topologies (section 5.2.2.2). The basic concepts, based on multiple overlay 

networks, and its dynamics are introduced. In the end of this chapter, the prototype of the 

P2P Messaging System and its models will be introduced. 
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5.1. Requirements 

Heterogeneous peer-to-peer networks are highly complex and impose special 

requirements: 

1. Decentralized management. There is no central control point, which takes care 
of global management, like building the overlay network topology. 

2. Exploiting individual peer capabilities. Typically, peer-to-peer networks are 
very heterogonous as processing power and network bandwidth differ greatly. 
Each peer should have its individual role in the overlay network, which suits to 
its capabilities. 

3. Less powerful peers should not slow down peers that are more powerful. It 
has to be balanced with the previous requirement (exploiting individual peer 
capabilities). 

4. Immediate adjustment to overlay network topology dynamics. Peer-to-peer 
networks are highly dynamic; peers join and leave constantly. The data 
throughput in the overlay network should not be affected significantly. 

5. Adjustment to overlay network traffic dynamics. The network utilization of 
peers usually changes frequently. Congestions at a peer node should not delay 
delivery to the others significantly.  

6. Increased robustness. Even when multiple peers would crash at the same time, 
the network topology should be robust enough to deliver to most peers 
without a major performance penalty. 

5.2. Basic Concepts and Topology 

5.2.1 Multiple Overlay Network Layers 

We assume that several peers inside a peer-to-peer network have a common interest in 

a specific topic (figure 19). These peers can be considered as subscribers of a topic in the 

publisher/subscriber domain. When a message of interest is sent, the peer-to-peer overlay 

network could be utilized. However, the last chapter pointed out that this approach is not 

efficient, even if the routing would be optimal. There are several reasons for this. The route 
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often includes several peers, which are not subscribers. The bandwidth of these peers is 

utilized although they are not interested in the message. In addition, latency increases with 

each peer on the route, and bandwidth may decrease due to slow peers. 

 
Figure 19.  Topic-subscribers in the Peer-to-Peer Network 

Instead of using the existing peer-to-peer overlay network, a new virtual network, the 

topic overlay network, is created (figure 20). This overlay network can be optimized to 

provide an efficient communication service, since it is independent from the more or less 

random wiring of the peer-to-peer network. In addition, Quality-of-Service parameters can be 

considered directly in the topic overlay network, e.g. messages with high priorities are 

delivered earlier than messages with low priorities. 
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Figure 20.  Topic Overlay Network 

The underlying peer-to-peer network can be utilized to collaborate with the topic 

network (figure 21). For instance, when a message is published from a node outside the topic 

network, the underlying peer-to-peer network can be used to find the next entry point to the 

topic network. Once it is found, the message is forwarded within the topic network. 
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Figure 21.  Peer-to-Peer and Topic-Peers Layers 

5.2.2 Overlay Network Topology 

By using virtual overlay networks for the message delivery, we became independent 

from the peer-to-peer network and its shortcomings. The next step is to investigate in suitable 

topologies for the new overlay network. Before we propose our solution in section 5.2.2.3 and 

5.3, we look at two potential solutions: ring and tree topologies. On each topology, we provide 

an overview, latency aspects, and the manageability and robustness character. Topologies and 

their characteristics are closely related to graph theory (Jungnickel 1999). 
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Definition: dmax specifies the maximum distance of two nodes within a topology. 

This definition is relevant for the determining the latency. We assume that the 

maximum latency is proportional to the maximum distance dmax. It depends on other factors 

like individual workload and individual latency characteristics, but dmax is the main criteria. 

5.2.2.1 Manageability: Ring Topology 

5.2.2.1.1 Overview 

A ring topology (figure 22) is one possibility to build an overlay network. Rings are 

scalable in means of bandwidth, because the workload of nodes is independent of the total 

number of nodes n. Each node is connected to two neighbors. When a node receives a new 

message from one neighbor, it forwards the message to its other neighbor. However, slow 

nodes limit the throughput of succeeding nodes in heterogeneous networks. This is due to the 

high dependency between the nodes; messages can be forwarded only as fast as they are 

received from the neighbor node. 

 
Figure 22.  Ring Topology 
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5.2.2.1.2 Latency 

If messages are sent in both directions, the maximum node distance in the ring is: 

2max
nd =  

The main disadvantage of this topology is that dmax is proportional to n. Since the 

maximum latency is proportional to dmax, it is also proportional to n. Therefore the scalability in 

means of latency of the ring topology is limited. 

5.2.2.1.3 Manageability and Robustness 

Rings are easy to manage in a decentralized environment, because a node depends 

only on its neighbors. They are robust for two reasons. Firstly, messages can be sent in two 

directions. If a node fails or is delayed, its neighbors are not cut-off, because they will still get 

the message from the other direction. Secondly, establishing backup and repair procedures is 

relatively easy due to the ring’s manageability and simplicity. 

5.2.2.2 Scalability: Tree Topology 

5.2.2.2.1 Overview 

Trees may utilize individual node bandwidth capabilities (figure 23). This is an 

advantage especially in heterogeneous peer-to-peer networks. High bandwidth nodes can 

serve in the top of the tree with many nodes attached to them, while low bandwidth nodes are 

located at the bottom with just a few or no nodes attached. 
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Figure 23.  Tree topology: can utilize individual node bandwidth capabilities 

5.2.2.2.2 Latency 

We assume a balanced tree and that each node can have k child nodes. The maximum 

number of nodes nh of a balanced tree with height h is: 
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The maximum distance is defined by routes between two leaf nodes with height h, 

which requires traversing the root node: 
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When we approximate ( ) 11 +−knh  by knh ⋅ , we get: 
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Unlike rings, tree topologies are scaleable in means of latency. The maximum distance 

depends only on a logarithmic function of n. Thus, the topology can scale up to large numbers 

of n with a limited latency penalty. 

5.2.2.2.3 Manageability and Robustness 

However, trees are harder to manage especially in a decentralized environment where 

no global information about the nodes is available. The topology is more complex, and it must 

be decided where to position nodes in the hierarchy and how to link them. Trees are more 

vulnerable than rings, as backup or repair procedures are more complicated. A delayed or 

failed node may result in influencing message delivery to entire branches. The branches could 

then attach the parent of the failed node, but this may strain the parent node and may require 

further backup procedure iterations. An optimal reconfiguration would require global 

knowledge of the tree; nodes could attach to the most capable parents, which may be located 

anywhere inside the tree. 
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5.2.2.3 Manageability and Scalability: Multi-Ring Topology 

5.2.2.3.1 Overview 

While rings are weak regarding latency and bandwidth in heterogeneous environments, 

trees are more vulnerable to failures. Because robustness is assumed to be more critical in a 

dynamic peer-to-peer network, the proposed solution is based on the ring topology. 

Nevertheless, the bandwidth and latency issues will be addressed by further measures. The 

fundamental idea is to form additional inner rings based on powerful nodes (section 5.4). 

Each node in an inner ring remains a participant in the outer rings (figure 24). The throughput 

is no longer limited by less powerful nodes, as powerful nodes communicate directly. Details 

about the multi-ring are explained starting with section 5.3 in this chapter.  

 
Figure 24.  Outer and Inner Ring 

5.2.2.3.2 Latency 

Latency is decreased compared to normal rings, as inner rings offer shortcuts to 

distant sections of outer rings. It is assumed that there are r rings, each consisting of 1/q 

nodes compared to its outer ring. Based on n nodes we can calculate the number of rings: 
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( )nr qlog=  

We assume that the distance between nodes involved in an inner ring is balanced over 

each ring. The number of steps in order to reach a node involved in an additional ring is q/2 

at maximum. The longest possible route is described between two nodes located at opposite 

sides in the outer ring. It requires passing each ring twice. 
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The scalability character of the proposed multi-ring topology is similar to the one of 

the tree topology. The maximum distance depends only on a logarithmic function of n. Thus, 

the topology can scale up to large numbers of n with a limited latency penalty. 

5.2.2.3.3 Manageability and Robustness 

Setting up multiple rings requires more steps to be taken than the setup for a single 

ring. It has to be decided when to set up and remove inner rings, and which nodes participate. 

Further, the distance between nodes participating in an inner ring should be balanced to keep 

the maximum distance between nodes low. Despite the additional measures, it is more 

manageable than a tree, because these steps do not require global knowledge. The robustness 

of rings is further improved by inner rings, which increase the level of connectivity. 
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5.3. Multi-ring: common Ring Concepts 

5.3.1 Nodes and Links 

Each node is connected to two neighbor nodes in order to form a ring (figure 25). 

When a node wants to broadcast data to the other ring nodes, it sends the data in both 

directions to its neighbors. Each node receiving data from a neighbor, will forward the data to 

the other neighbor. Internally, arriving data will be put in a FIFO queue, and a sender process 

will forward the data packets from the queue one by one. In addition, the node will keep track 

of data, which was received earlier, by saving information that identifies the data uniquely 

(sender and message ID). If the data arrives again, the node will ignore it as it has already been 

processed. 

 
Figure 25.  Ring 

5.3.2 Backup Links 

A simple ring is very vulnerable due to unreliable nodes. When a node crashes or gets 

congested, the entire ring could be affected. However, due to the simplicity of the topology, 

backup procedures can be established relative easily. The proposed solution is based on 
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backup links. Each node will have two backup links to the nodes next to its neighbors (figure 

26). If a neighbor node crashes, the backup link to the next node of the crashed node will be 

activated automatically. In addition, the data will be sent through the backup link when a 

neighbor node is congested because it cannot receive, process, or forward the data fast 

enough. This mechanism will increase robustness and overall throughput. 

 
Figure 26.  Ring with Backup Links 

5.3.3 Primary and Secondary Links 

The proposed multi-ring topology utilizes additional links between the nodes to 

decrease latency and to connect fast nodes together directly. These additional links introduce 

redundancy as the same data may arrive from several different sources. To avoid the overhead 

that would result, we propose the concept of primary and secondary links. In this case, we 

refer to unidirectional links with a sender node and receiver node. Bi-directional links consist 

of two unidirectional links. Each unidirectional link has a mode: primary or secondary. The 

sender node of a primary link sends data immediately to the receiver node, while a sender 

node of a secondary link first announces the availability of data to the receiver node and waits 
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for the answers whether the data should be sent. This concept considers that there is a specific 

route, which is preferred over others because it is faster. This route typically consists of 

primary links, while other routes include secondary links. 

5.3.3.1 Determining the Mode 

The decision, whether a unidirectional link is primary or secondary, is determined dynamically 

by the system and is adjusted when needed. In the beginning, all links are primary. However, 

due to redundant routes, nodes receive data more than once. They change the mode to 

secondary if a link delivers obsolete data frequently. The receiver decides when to change the 

mode by keeping track of the last y data packages. The condition a primary link has to fulfill is 

that at least x out of the last y packages have to contain data, which was not previously 

delivered to the link. If the link does not fulfill this condition, its mode is switched to 

secondary. Secondary links, which fulfill the condition, are switched to primary. It depends on 

the values of x and y whether the mode switches fast or not. Since switching implies only little 

overhead, we propose low values to adjust to new situations quickly, like four for x and six for 

y. To switch modes, the receiver node sends command messages containing the new mode to 

the sender. 

5.4. Multi-Ring: Inner Rings 

5.4.1 Identifying Nodes for Inner Rings 

5.4.1.1 Determining Bandwidth 

The first step in order to establish inner rings is to identify the nodes that will 

participate. Nodes, which are part of multiple rings, must provide a higher workload. In 
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particular, higher bandwidth is necessary due to forwarding data to additional nodes. Here we 

can exploit the heterogeneity of peer-to-peer networks by picking nodes that have a more 

powerful Internet connection. There are several possible ways to evaluate nodes, for example 

testing their latency or their bandwidth when they interact with another node. However, 

results may be influenced by the other node, which may be busy with another task. Thus, the 

processing of the request could be delayed. To avoid this situation, we propose to evaluate the 

sending capacity without the interaction of another node. This idea also considers that the 

ability to send data is most important, as becoming part in an inner ring requires sending more 

data. An evaluation without interaction from another party requires a connection-less 

protocol, like UDP. The destination address is not relevant; it could be any node of the ring. 

The well-known UDP port number nine could be used, since it is assigned to a service, which 

discards incoming packets. The available bandwidth may change due to concurrent 

applications or rings. To adjust to those changes, the node will verify its bandwidth 

periodically.  

5.4.1.2 Deciding whether a Node joins an Inner Ring 

After the node has evaluated its sending bandwidth, the results have to be compared 

to other ones in order to make a decision. The decision is always relative to its neighbor 

nodes. We assume a balanced ring with nodes participating in an inner ring every q nodes.  

The node (thisnode in the algorithm) will request the results from near nodes (testnodes in the 

algorithm) in both directions within the distance q. This information is gathered by sending 
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query system messages, which will be answered by the nodes with response system messages. 

Based on this information, the decision will be made with the following algorithm: 

(01) testnodes=neighbors of thisnode with maximum distance q 

(02) ringnodes=all node in testnodes, which are not involved in inner rings 

(03) if(thisnode.bandwidth == max(ringnodes.bandwidth)) 

(04) { 

(05)    innerleft=next inner ring node of testnodes to the left 

(06)    innerright=next inner ring node of testnodes to the right 

(07)    addNode=false 

(08)    if(innerleft not exists OR innerright not exists) {addNode=true} 

(09)    else if(distance(innerleft,innerright) > q) {addNode=true} 

(10)    else{ 

(11)       innernodes=inner ring neighbors of innerleft with maximum distance q 

(12)       if(thisnode.bandwidth > min(innernodes.bandwidth)) {addNode=true} 

(13)    } 

(14)    if(addNode==true) {add thisnode to inner ring} 

(15) } 

5.4.1.3 Verifying Nodes in Inner Rings 

The membership of inner ring nodes has to be verified frequently. The arrival of more 

capable nodes may lead to the abandon of less capable ones. In addition, the available 

bandwidth may change due to concurrent network traffic. The decision is based on a 

bandwidth comparison with the neighbor ring nodes. The following algorithm is used: 
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(01) distanceleft=distance to left inner ring neighbor in the outer ring 

(02) distanceright=distance to right inner ring neighbor in the outer ring 

(03) if(distanceleft+distanceright < 2q) 

(04) { 

(05)    testnodes=inner ring neighbors of thisnode with maximum distance q 

(06)    if(thisnode.bandwidth == min(testnodes.bandwidth))  

(07)    { 

(08)       numberouternodes=(testnodes.distanceleft+testnodes.distanceright)/2 

(09)       if((testnodes.number-1)/numberouternodes) >= (q-1)) 

(10)       { 

(11)          remove thisnode from this and more inner rings 

(12)       } 

(13)    } 

(14) } 

 

5.4.2 Balancing Inner-Ring Nodes 

To ensure latency scalability, the topology depends on a balanced occurrence of inner 

ring nodes. If these nodes are unbalanced, the sections that lack inner-ring nodes suffer from 

increased latency. To avoid this situation, the system should take measures to balance the 

inner ring nodes. Each inner ring node will determine the distance in the outer ring of its inner 

ring neighbors. If the distances differ by two or more, the node will swap its position with its 

neighbor node, which is closer to the more distant inner ring node. This implies that the 
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distances will be determined periodically, which will be realized by exchanging special query 

and response system messages. 

An alternative to this procedure would be to relocate inner nodes to the optimal 

position within one step. However, this would result in problems with message delivery. If the 

node has not yet received a message, and is relocated into a section where the message has 

already been forwarded, the message will never arrive at the relocated node. Swapping the 

position with a neighbor makes this situation more manageable. 

5.4.2.1 Swapping Positions 

We assume a ring section consisting of nodes a to f (figure 27). Each node has two 

links to its neighbors, and two backup links to nodes next to its neighbors. We assume that 

node c wants to swap positions with node d. 

 
Figure 27.  Nodes before Swapping 

The swap procedure follows these steps: 

1. node c sends swap notification to node d 

2. node d acknowledges swap notification 

3. link from node b to node c is turned into a backup link 

4. link from node d to node e is turned into a backup link 

5. node  c drops backup link to node a 

6. node  d drops backup link to node f 
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7. backup link from node c to e is turned into a regular link 

8. backup link from node b to d is turned into a regular link 

9. node c builds backup link to node f 

10. node d builds backup link to node a 

After step six, node b and e have just one regular link (figure 28). These nodes will 

buffer incoming data until other links are established in step seven and eight (figure 29). The 

regular links of the ring are restored and the missing backup links are built during step 9 and 

10 (figure 30). 

 
Figure 28.  Temporary Situation during Swapping A 

 
Figure 29.  Temporary Situation during Swapping B 

 
Figure 30.  Situation after Swapping 
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5.5. Multi-Ring: Node Dynamics 

5.5.1 Adding Nodes 

A new node will always be inserted between two connected nodes. The difficulty 

comes in finding two nodes close to the new node. The underlying peer-to-peer network can 

offer candidates. Those candidates are pinged to find the ones, which offer the least latency. 

Figure 31 shows the situation in which two nodes are found where the new node will be 

inserted.  

 
Figure 31.  A New Node is going to be added in the Ring 

Now the necessary links have to be established. The new node establishes a regular 

link to the two existing nodes, and backup links to their two neighbors. To preserve the 

functionality of the ring, the new links will be inactive until all links are ready. Messages will 

use the old links until the new node has prepared all new links and triggers their activation. 

The regular link between the two existing nodes then becomes a backup link and replaces the 

obsolete backup links. The result is shown in figure 32. 
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Figure 32.  The new Node is integrated in the Ring 

5.5.2 Removing Nodes 

5.5.2.1 Controlled Disconnect 

When a node inside the multi-ring decides to quit, it initiates a controlled disconnect. 

The node informs its direct neighbors and the nodes connected with a backup link by sending 

a CLOSE message. However, the leaving node still serves as a ring member and forwards 

messages. The direct neighbors already have a backup link, which connects them directly 

together. This backup link is converted to a regular link when they receive the CLOSE 

message from the leaving node. The nodes, which are connected with a backup link to the 

leaving node, initiate a reconnection of their backup links. When the nodes have reconnected 

themselves, they will send a CLOSEACK acknowledgement message to the leaving node. The 

leaving node will finally close its links when it receives the CLOSEACK messages from the 

surrounding nodes. 
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5.5.2.2 Unpredicted Disconnect 

A node may quit without warning for any reason. The multi-ring system must realize 

this situation and react promptly in order to maintain constant data throughput. Figure 33 

shows an intact multi-ring with backup links. It is assumed, that the node at the four o’clock 

position will crash without any prior notification. 

 

Figure 33.  Situation before Disconnect 

The system will recognize that the links connected to the failed node are not 

functional anymore. These links will be removed and the backup link will be activated (figure 

34) as soon as the nodes detect the broken links. The activated backup link will be converted 

to a regular link. Then, new backup links will be established to restore the ring completely 

(figure 35). 



 85 

 

Figure 34.  Ring with activated Backup Link after Disconnect 

 

 

Figure 35.  Completely restored Ring 

5.6. Related Topologies 

Other modified ring topologies exist, and some are for exampled analyzed in a recent 

study (Aiello and others 2001). They analyze chordal rings, express rings, multirings, and 

hierarchical rings and demonstrate their strong topological relationship. Chordal and express 
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rings have similarities to the multi-ring presented in this chapter as they build shortcuts to 

distant sections. The presented multirings in the study, share the terminology with our multi-

ring. However, they are formed by multiple rings, of which each shares at least one edge with 

another one. This results in a tree-like structure, where the ring in the center is similar to the 

root of a tree. This is applied for the hierarchical rings, too. The main difference is that the 

rings share one node instead of one edge. While the other ring topologies are fault tolerant as 

they have redundant links, the hierarchical rings depend largely on single nodes for a fully 

connected network. Another hierarchical approach, which is similar to multirings and 

hierarchical rings, is the hyper-ring (Sibai 1998). The underlying concept is to connect rings by 

several additional rings. However, none of the presented rings can be established in dynamic 

peer-to-peer networks based on local information, because their wiring depends on global 

knowledge. For example, the chordal rings require nodes to know distant nodes in order to 

form a connection between them. In addition, the related ring topologies do not consider the 

heterogeneity, which is important in peer-to-peer networks. 

5.7. The P2P Messaging System Prototype 

A prototype of the P2P Messaging System was developed as a proof-of-concept. The 

implemented functionality was determined by the requirements of the performance 

benchmarks presented in the next chapter. Thus, the functionality is currently restricted to 

single rings and dual mode links. The prototype reused several components of the server-less 

messaging system presented in chapter 3: connection, link, message queue, message 

encoder/decoder, and message delivery. 
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5.7.1 System Model 

The central concept in the system model (figure 36) is the RingNode, which represents 

a node in a ring consisting of peers interested in a specific topic. Messages are sent to and 

received from the group using the RingNode. Messages may be delivered multiple times, as 

they may arrive from multiple sources. Thus, a concept is needed that avoids delivering 

messages multiple times to the application. In the prototype, each RingNode object has a 

MessageTracker object, which keeps track of all the received messages. The RingNode queries 

the MessageTracker whether a received message is new, and ignores the message if it is old. 

The RingNode is connected to its ring neighbors with two ModeLinks, which extend the Link 

concept from chapter 3 with the primary and secondary modes presented in section 5.3.3. The 

ModeLink sends messages directly to object if the mode is primary. However, if the mode is 

secondary, it announces the availability of a message before it actually sends it. Announced 

messages are temporary stored in the MessageStore. 

 
Figure 36.  P2P Messaging System Prototype: System Model 
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5.7.2 Dual Mode Links 

Secondary links require additional steps to be taken by the ModeLink. Messages are 

announced by sending a corresponding announce message containing the message ID. In 

addition, the ModeLink stores the message in the MessageStore temporary. The ModeLink on 

the other communication side asks the RingNode associated with it whether a message with 

the ID contained in the announce message was received before. Then, the second ModeLink 

responds with a request message in case the message is new or with a reject message in case 

the message is old. The first ModeLink receives the response message, removes the actual 

message from the MessageStore, and, depending on response, sends or drops the message. 

As explained in the last paragraph, two connected ModeLinks communicate with 

special command messages in order to implement the dual mode link functionality. The 

following pseudo-code illustrates the processing of received command messages: 

(01) switch(msg.command) { 

(02)    case ANNOUNCE: 

(03)       myAnn=messageStore.remove(msg.id); 

(04)       if(myAnn!=null) break; 

(05)       isNew=ringNode.isMessageNew(msg.id); 

(06)       if(isNew) msg.command=REQUEST; 

(07)       else msg.command=REJECT; 

(08)       sendMessage(msg); 

(09)       break; 

(10)    case REQUEST: 
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(11)       stored=messageStore.remove(msg.id); 

(12)       sendMessage(stored); 

(13)       break; 

(14)    case REJECT: 

(15)       messageStore.remove(msg.id); 

(16)       break; 

(17)    case SET_PRIMARY: 

(18)       sendMode=PRIMARY; 

(19)       break; 

(20)    case SET_SECONDARY: 

(21)       sendMode=SECONDARY; 

(22)       break; 

(23) } 

5.7.3 JXTA Integration 

JXTA, which was discussed in chapter 2, served as the underlying peer-to-peer 

network for the P2P Messaging System prototype. Currently, the sole task of JXTA is to look 

up peers, which participate in a specific topic group. This is done by creating a corresponding 

JXTA peer group for each P2P Messaging System topic group. All subscribing peers become 

also peer group members and can be retrieved by sending peer discovery messages to the peer 

group. Once a peer is discovered, JXTA sends a response message containing the 

advertisement of the found peer. The P2P Messaging System extracts the IP address from the 

peer advertisement and tries to connect to the peer. 
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5.7.4 Developer Interface 

The objects relevant to developers are shown in figure 37. A developer’s first step is to 

initialize a P2PMsgSytem object, which represents one instance of the system. Then, a 

subscription can be established using a Helper object, which returns an initialized RingNode 

object if the subscription was successful. Internally, the Helper queries a P2PJxta object in 

order to retrieve an IP address of an existing peer in the topic group. In case a peer was 

found, the Helper initiates the connection process to it. If no peers were found, it creates an 

unconnected RingNode. Once a RingNode is acquired from the Helper, it is used to receive 

and send group messages. All messages have to implement the RingMessage interface. Beside 

the message priority, it specifies the sender ID and the message ID. Together, the IDs identify 

a message uniquely. Currently there exist two  implementations of the RingMessage interface: 

StringRingMessage and BytesRingMessage. 

 
Figure 37.  P2P Messaging System Prototype: Helper, P2PJxta, and RingMessage 
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5.8. Summary 

We addressed the problems found in the previous chapter by the novel multi-ring 

topology. The two potential solutions, tree and (single) ring topology, have serious 

disadvantages, which the multi-ring aims to overcome. In addition to the bandwidth scalability 

of rings, we introduced latency scalability by forming additional inner rings, which provide 

short cuts to all ring sections. Inner ring peers, which are selected by their sending bandwidth, 

are kept balanced in the outer rings. The robustness of rings is further improved by backup 

links, which are activated when a node fails. Dual mode links avoid message collisions and 

increase therefore the performance. Beside these concepts, we also presented mechanisms for 

adding and removing ring nodes. Related topologies, like chordal rings, were discussed. Lastly, 

we presented models and concepts of the P2P Messaging System prototype, which used JXTA 

as its underlying peer-to-peer platform. The prototype reused many components of the system 

presented in chapter 3. However, it is based on two central concepts. Firstly, the RingNode to 

send and receive messages to and from the group. Secondly, the ModeLink implements the 

dual mode links by exchanging special command messages. In the next chapter, we will 

evaluate this prototype. 
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CHAPTER 6 

EVALUATION 

In this chapter, we evaluate the P2P Messaging System, which was presented in the 

previous chapter. The first comparison contrasts its group communication characteristics to 

the ones of the peer-to-peer platforms Pastry (Rowstron and others 2001)/Scribe (Rowstron 

and Druschel 2001) and JXTA (JXTA 2002, Sun 2002). By focusing on group communication, 

the P2P Messaging System provides several functional and conceptual advantages. The second 

comparison is an experimental performance benchmark, which compares its efficiency to 

JXTA’s propagate pipe. The tests examine the message rate depending on the message size 

and number of receivers in order to gather information about efficiency and scalability. For 

both, P2P Messaging System and JXTA, we present charts for the plain test results and the 

scalability behavior. Lastly, comparison charts contrast the data rate, message rate, scalability, 

and reliability of the two systems. 

6.1. Comparison of Characteristics 

This section compares the group communication characteristics of the P2P Messaging 

System to related peer-to-peer systems. Chapter 2 reviewed several systems, but solely 

Pastry/Scribe and JXTA are based peer-to-peer networks. The other systems are not 

considered, as they rely on different infrastructures and differentiate between servers/brokers 

and clients. For the comparison, we refer to feature matrixes of chapter 2. As Pastry/Scribe 

and JXTA were discussed earlier, we focus on the P2P Messaging System. 
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Table 8.  P2P Messaging System Comparison: General Characteristics Matrix 

 P2P Messaging System Pastry/Scribe JXTA 
propagate pipe 

Scalability 
increasing 
measures 

Multi-ring topology, ring for 
each topic 

Routing, tree for each 
topic 

Routing, 
separation of 
peer groups 

Reliable 
message 
delivery 

Messages may be lost 
because of multiple node 

failures 

Messages may be lost 
because of single node 

failures 

Messages may be 
lost for any 

reason 
Quality-of-
service 
parameters 

Priority U U 

Message filters Current filter 
implementation does not 

avoid network traffic 
U U 

 

The P2P Messaging System achieves scalability by its multi-ring topology, which does 

not require any routing mechanisms. In addition, it increases scalability by building separate 

overlay networks for each topic. This separation concept is shared with the other systems. 

Although the P2P Messaging System does not provide exactly-once-delivery, it achieves the 

highest degree of reliability of the compared systems. A messages is only lost when multiple 

peers fail and no peer exists that forwards the message. This situation is very unlikely to occur, 

as inner rings increase the connectivity and messages traverse rings in two directions. 

Currently, the system supports the message priority Quality-of-Service parameter, and 

additional parameters may be implemented in the future. The other peer-to-peer systems lack 

Quality-of-Service parameters. Message filters are only supported by the P2P Messaging 

System. However, filters in the current prototype only avoid putting messages in the 

application receiver queue. They do not decrease network traffic, because messages have to 



 94 

traverse all peers in order to ensure a complete delivery. Future implementations may optimize 

this behavior. 

 

Table 9.  P2P Messaging System Comparison: Group Communication Characteristics Matrix 

 P2P Messaging System Pastry/Scribe JXTA 
propagate pipe 

Topology Multi-ring 
collaborating with 

peer-to-peer network 

Tree built on 
peer-to-peer 

network 
Peer-to-peer 

Group formation  
Topic subscription Topic 

subscription 

Peer group 
membership, propagate 

pipe  
Node roles 

Peers, inner ring peers Peers 
Peers, 

rendezvous/router 
peers 

Multicast messages 
traverse only nodes in 
the group 

D U U 

Heterogeneity of 
nodes considered  D U U 

Adjustment to node 
failures 

Activation of backup 
links and restoration 

of regular links 

Local restoration 
of subscriptions 

(Insufficient 
information available) 

 

The P2P Messaging System creates overlay networks based on the multi-ring topology. 

The groups are formed by peers subscribing to a topic. All nodes are peers, as there are no 

client and server roles. However, there is a differentiation between simple peers and inner ring 

peers. Inner ring peers, which were selected because of their higher bandwidth, forward 

messages to multiple rings. Unlike the other systems, the P2P Messaging System forms overlay 

networks for each topic group. Therefore, messages traverse only participating peers. The 

heterogeneity of peers is exploited by forming inner rings, which provide short cuts to all 
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sections in the outer ring. The P2P Messaging System reacts fastest to node failures, as backup 

links are immediately activated. The message delivery continues as soon as the failure is 

detected. The regular link configuration is restored in parallel. 

The comparison of the characteristics illustrated several advantages of the P2P 

Messaging System. Its design considers several group communication requirements in peer-to-

peer networks. The other systems do not focus on group communication and concentrate on 

a broader functionality. Especially JXTA has several additional features, for example group 

membership services, HTTP gateways, and security considerations. In contrast, the P2P 

Messaging System focuses on high performance, robustness, and scalability. 

6.2. Experimental Performance Benchmarks 

In this section, we compare the P2P Messaging System prototype to the peer-to-peer 

platform JXTA. Pastry/Scribe Our goal is to evaluate the general efficiency of the systems, 

their performance depending on the message size, and their scalability with an increasing 

number of receiving peers. 

6.2.1 Test Environment 

Peer-to-peer networks are highly complex and heterogeneous because their size is not 

limited and the equipment of peers differs greatly. In addition, peers have a dynamic and 

unpredictable character, as they join and leave frequently. This complexity cannot be mirrored 

in a computer laboratory without enormous effort. One approach would be to use a 

simulation, but this prohibits making comparisons with existing products, which require a real 

network, not a simulation, in order to operate. As our goal was to improve the group 
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communication of JXTA, we needed to compare our system to it. This cannot be done with a 

simulation. Instead, we used a local network to evaluate the two systems. Although this does 

not reflect the peer-to-peer complexity, it reveals the general efficiency of the systems. 

The tests were performed with seven identical computers. Each PC was equipped with 

a 1.7 GHz Intel Pentium 4 processor, 256 MB of RAM, and a 100 Mbit Ethernet adapter. 

Microsoft Windows 2000 was the operating system. The Java virtual machine was Sun’s Java 

1.3.1, using the Client Hotspot mode. All tests were performed with one sender peer, while 

the number of the receiver peers was one, three, and five. Each configuration was tested with 

a message size of 1, 10, 100, 1000, 10000, and 100000 bytes. Because of the dynamic 

compilation of the virtual machine, the results required several test runs before they became 

stable. The presented results are the average of the results of two test runs after the 

stabilization process.  

6.2.2 JXTA 

JXTA was already discussed in chapter 2. It aims to provide an all-purpose peer-to-

peer protocol. Although the protocol is platform and language independent, the reference 

implementation, which is used in the tests, is developed in Java. The tests were performed 

using JXTA 1.0, stable build 49b of February 2002. Each JXTA peer was running on a 

separate machine. One machine was running exclusively as a JXTA relay and did not 

participate in sending or receiving messages. The relay and the other peers were only 

connected with each other in the local network and did not join a JXTA Internet network. 

JXTA’s communication mechanisms are based on “pipes,” which connect peers virtually 
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together and hide the message delivery done by the peer-to-peer network. Besides unicast 

pipes, JXTA also offers a “propagate pipe” for multicasting a message to multiple peers, 

which listen to it. This kind of group communication is very similar to the publish/subscribe 

concept. 

Most JXTA pipes are by definition unreliable, although reliable pipe types exist too. 

However, the propagation pipe is not reliable, and there is currently no multicasting 

alternative. This unreliable character could also be observed during the tests (section 6.2.2.1). 

For the majority of the tests, only around 20% of the sent messages were actually received, 

while 80% did not reach their destination. This observation was made independently of the 

number of receiving peers (one, three, or five). However, the message size influences the 

reliability, as messages of 10,000 bytes were delivered more reliably. Experiments showed that 

JXTA’s reliability depends heavily on the workload within a timeframe. The experiments are 

based on introducing a pause between sending messages. The results (table 6) indicate that 

even a small pause improves reliability dramatically. These experiments were made with a 

single machine (866 MHz Intel Pentium 3 CPU), which hosted one rendezvous, one sender 

and one receiver peer. Due to the different test environment, the values are not comparable to 

the ones in section 6.2.2.1. However, the general observation is the same independent of test 

environments: JXTA’s reliability suffers from a high workload, as it discards messages in stress 

situations. This was confirmed by Bernard Traversat from Sun: “Each peer has a finite 

message queue. There is no control-flow in the propagate pipe service, so as soon as the 

receiving queue is full, messages are dropped. [...] Part of the reasoning we had [was that we 

wanted] to protect the peer from malicious attacks.” In order to preserve comparability, we 
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decided not to introduce a pause at the sender side, as this would have influenced the further 

experiments significantly. Instead, we measured the receiver’s results based on the number of 

actually received messages, while the sender’s results are based on the number of sent 

messages. 

Table 10.  JXTA: Message Reliability Depending on the Sender’s Pause 

Pause 
[Milliseconds] 

Number of 
Sent Messages 

Number of 
Received Messages 

Reliability 
[Messages received/sent] 

0 1,000 480 48.0% 
10 1,000 984 98.4% 
20 1,000 995 99.5% 
30 1,000 998 99.8% 
40 1,000 1,000 100.0 % 

 

6.2.2.1 Message Rate Results 

The results (figures 44 - 49) indicate that JXTA’s current implementation of the 

propagate pipe does not offer high performance. The values show that the message rate, 

especially for the receiver, does not depend significantly on the message size. This is an 

indication for the poor efficiency of the message delivery process. Small sized messages 

should be delivered much faster than ones with a larger size are. The tests revealed another 

limitation: JXTA did not handle message with a size of 100,000 bytes. Although the sending 

process was successful, the receivers did not receive any messages. Therefore, we could 

measure the message rate only for messages of up to 10,000 bytes.  
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Figure 38.  JXTA Message Rate: One Receiver 
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Figure 39.  JXTA Message Rate: Three Receivers 
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Figure 40.  JXTA Message Rate: Five Receivers 
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Figure 41.  JXTA Message Rate: Seven Receivers 
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Figure 42.  JXTA Message Rate: Nine Receivers 

1 10 100 1,000 10,000
50

75

100

125

150

175

200

225

250

275

300

Sender
Receiver

Message Size [Bytes]

M
es

sa
ge

 R
at

e
[M

es
sa

ge
s/

Se
co

nd
]

 
Figure 43.  JXTA Message Rate: Eleven Receivers 
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6.2.2.2 Message Rate Scalability 

Figures 50 and 51 illustrate the scalability behavior. The results of the tests with five, 

seven, nine, and eleven receivers were related to the results of the test with three receivers. 

The relative message rate values are calculated by dividing the message rate of an n receivers 

test by the corresponding message rate of the three receivers test. We observed the tendency 

that the performance decreased when the number of receiver peers was increased. Especially 

the sender rate dropped. This may indicate a limited scalability of the delivery process. 
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Figure 44. JXTA: Relative Message Rate for the Sender 
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Figure 45.  JXTA: Relative Message Rate for the Receiver 

 

6.2.3 P2P Messaging System 

The concepts of the P2P Messaging System (P2PMS) were presented in chapter 5. The 

implemented prototype uses JXTA solely to look up peers for building its own topology and 

infrastructure. However, the prototype does not implement the complete multi-ring 

functionality. Instead, it focuses on meeting the requirements of the test environment. It 

establishes a single ring to link the peers together because the number of peers is not sufficient 

to form additional inner rings. The connecting links utilize the primary and secondary mode 

concept (see chapter 5). Backup links were not implemented, as stability issues are not 

considered here. 
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6.2.3.1 Message Rate Results 

The results for the P2P Messaging System prototype are shown in figures 52 - 57. All 

messages were delivered reliably, and the message rate depended largely on the message size. 

This indicates that the network bandwidth is used efficiently. Larger messages require a higher 

bandwidth, and the throughput depends highly on the network capabilities. However, the 

values for messages with sizes 1, 10, and 100 bytes did not differ significantly.  This indicates a 

certain amount of overhead involved with each message. The most striking observation is that 

the values of the test with a single receiver differed greatly from the ones with three and five 

receivers. However, this issue becomes clear by considering the topology. There is no ring 

established when only two peers are connected. Instead, this situation can be seen as a unicast, 

as the sender is directly connected to the receiver. A ring, which is built when at least three 

peers are present, requires peers to perform additional message sending for two reasons. 

Firstly, the sender is delivering the message to both of its neighbors. Secondly, each peer has 

to forward received messages to its other neighbor. Once a ring is established, the throughput 

does not depend on the number of peers significantly. 
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Figure 46.  P2PMS Message Rate: One Receiver 
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Figure 47.  P2PMS Message Rate: Three Receivers 
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Figure 48.  P2PMS Message Rate: Five Receivers 
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Figure 49.  P2PMS Message Rate: Seven Receivers 
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Figure 50.  P2PMS Message Rate: Nine Receivers 
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Figure 51.  P2PMS Message Rate: Eleven Receivers 
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6.2.3.2 Message Rate Scalability 

Figures 58 and 59 illustrate the relative message rate, which is determined as described 

in section 6.2.2.2. The results provide evidence for the scalability of the P2P Messaging 

System, as the message rate does not decrease with an increasing number of receivers. The 

results for small sized messages are even improving, because there are fewer message 

collisions relative to the total number of peers. 
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Figure 52.  P2PMS: Relative Message Rate for the Sender 



 109 

3 5 7 9 11
90%

100%

110%

120%

130%

140%

150%

160%

170%

180%

190%

1 Byte
10 Bytes
100 Bytes
1,000 Bytes
10,000 Bytes
100,000 Bytes

Number of Receivers

Re
lat

iv
e 

M
es

sa
ge

 R
at

e

 
Figure 53.  P2PMS: Relative Message Rate for the Receiver 

 

6.2.4 Comparison 

6.2.4.1 Data Rate 

The data rate values (figures 60, 61, and 62) are based on the message rate results. 

Each message rate was multiplied with the corresponding message size. Figure 60 shows the 

data for one receiver. Because of the unicast setup the data rate for the P2P Messaging System 

is the highest of all tests. The data rate came close to the maximum network capabilities. At 

the Ethernet layer the maximum rate is theoretically 12 Mbytes/second (100 Mbit). However, 

the maximum rate at the TCP/IP layer is lower because of the overhead of the TCP/IP 

protocol. The results reflect that the network is becoming the restricting factor for larger 
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messages. In contrast to that, JXTA never came close to the potential of the network. Even 

with messages consisting of 10,000 bytes, JXTA achieved only a fraction of the maximum 

network data rate. Messages consisting of 100,000 could not be delivered as explained before. 

Figure 61 shows the data rates for the tests with three receivers. The data rates for the P2P 

Messaging System differs significantly from the test with one receiver because of the same 

reasons as explained in section 6.2.3.1. Another difference is divergence of the sender and 

receiver rate for messages consisting of 100,000 bytes. The reason for this behavior is that the 

sender switched one link to a neighbor peer to secondary. The sender could utilize the full 

network capacity for serving only one neighbor peer. In contrast, the receiving peers require 

network capacity for both, receiving and sending messages, and achieve therefore only half the 

data rate. The sender did not switch links to secondary for smaller messages because the delay 

of sending one message was smaller than the delay of traversing the ring peers. Thus, the 

sender was sending messages to both neighbors. The data rate did not vary significantly for 

five, seven, nine, and eleven receivers. This behavior can be observed when comparing the 

values for three receivers (figure 61) to the ones for eleven receivers (figure 62). 
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Figure 54.  P2PMS’ and JXTA’s Data Rate: One Receiver 
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Figure 55.  P2PMS’ and JXTA’s Data Rate: Three Receivers 
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Figure 56.  P2PMS’ and JXTA’s Data Rate: Eleven Receivers 

6.2.4.2 Message Rate Factors 

The message rate results demonstrated that the P2P Messaging System prototype is 

significantly faster than JXTA’s propagate pipe. Figures 63 and 64 present the factors that 

indicate how many times faster it performs. The factors are decreasing with increasing 

message sizes because networking becomes the restricting factor instead of the message 

handling done by the systems. The high values of the tests with a single receiver are due to the 

same reasons as explained in section 6.2.3.1. The factors are growing with an increasing 

number of receivers because of the different scalability behavior of the systems; JXTA’s 

performance decreased while our system’s performance increased with a growing number of 

receivers. The receiver performance factors are higher than the sender performance factors 

because of JXTA’s low receiver performance.  
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Figure 57.  Message Rate Factors for Sending 
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Figure 58.  Message Rate Factors for Receiving 
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6.2.4.3 Scalability 

The scalability character of both, JXTA (section 6.2.2.2) and the P2P Messaging 

System (section 6.2.3.2), is summarized by figure 65. The chart is based on the average of the 

relative message rate for all message sizes; expect 100,000 bytes, as messages of this size could 

not be delivered by JXTA. In short, JXTA’s message rate depended on the number of 

receivers and revealed a limited scalability, while the P2P Messaging System demonstrated its 

scalable character, as the message rate did not decrease with an increasing number of 

receivers. 
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Figure 59.  Scalability Comparison 
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6.2.4.4 Reliability 

We already illustrated the unreliable character of JXTA’s pipes in section 6.2.2. JXTA’s 

reliability suffers from high workloads. Figure 66 presents the reliability character of both 

systems. The P2P Messaging Systems delivered all messages reliably, while JXTA dropped 

most of the messages. Two observations were made. Firstly, messages consisting of 10,000 

bytes were delivered more reliable than others were. Secondly, the reliability is increasing 

slightly with a growing number of receivers. Both observations may be due to lower message 

rates and the resulting lower workload on the system. 
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Figure 60.  Reliability Comparison 
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6.2.5 Discussion 

JXTA’s propagate pipe communication mechanism seems to be immature and not yet 

optimized. This becomes more understandable when considering that JXTA is a rather new 

product. An Engineering Manager from Sun Microsystems confirmed that there are known 

performance issues. The main problems are the message queue management and the input 

stream processing. Additionally, the queue design reveals a defensive but ineffective approach, 

as it drops messages when the queue is full. Queues with a dynamic size, as used in the P2P 

Messaging System prototype, allow higher reliability and performance at the cost of potential 

higher memory consumption. Unlike JXTA, the P2P Messaging System was designed to 

provide high performance as its primary goal. Thus, the efficiency of message queues, stream 

processing, and their collaboration were considered from the beginning. In addition, the 

topology was designed to meet high performance requirements as clarified in chapter 5. As a 

result, the performances of the two systems differ greatly. This difference may even increase 

in real peer-to-peer networks, because the P2P Messaging System creates overlay networks for 

each group. In this way, the peers are connected directly together without using the existing 

peer-to-peer infrastructure where many uninvolved peers may have to be traversed. 

6.3. Summary 

The evaluation indicated that the P2P Messaging System provides several 

enhancements for group communication in peer-to-peer networks. A comparison of its 

characteristics with Pastry/Scribe and JXTA presented several advantages. Because of its 

multi-ring topology and the creation of overlay networks for each group, it achieves a more 



 117 

robust and efficient message delivery. Further, the P2P Messaging System prototype 

demonstrated its efficiency in an experimental performance benchmark with JXTA. We 

illustrated that JXTA has serious reliability restrictions when the workload is high. 

Nevertheless, we compared our system to JXTA’s propagate pipe, which is its common group 

communication mechanism. The results indicated JXTA’s poor performance, which also 

decreases with a growing number of receiving peers. In contrast, the P2P Messaging System 

provided high message rates particularly for small message sizes. In addition, the tests 

provided evidence for its scalable character. Aside from the one receiver configuration, which 

allows an exceptionally high throughput due to its unicast setup, the throughput did not 

decrease with a growing number of peers. Comparison charts demonstrated that the P2P 

Messaging System significantly improves data rate, message rate, scalability, and reliability. In 

short, we provided evidence for accomplishing our goal to improve group communication in 

peer-to-peer networks. 
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CHAPTER 7 

CONCLUSION 

This thesis investigated in messaging technology and proposed two messaging 

systems, which focus in server-less environments and high performance communication. In 

particular, peer-to-peer networks were targeted, because they lacked efficient group 

communication methods. 

We showed that the majority of the current messaging systems are tailored to the 

needs of enterprises and their infrastructure. Enterprise applications usually require exactly-

once-delivery, which includes the storing messages persistently. This does not come free, 

because access to persistent storage implies a greater overhead. In addition, dedicated servers 

are needed, which have to be setup and maintained. These were the reasons to design and 

implement a messaging system, which can be applied in server-less environments. However, 

its scalability was restricted due its network topology. Therefore, we investigated in current 

messaging and peer-to-peer topologies. To meet the requirements of highly dynamic and 

heterogeneous peer-to-peer networks, the novel multi-ring topology was proposed, which 

aims to combine the robustness and manageability of ring topologies and the scalability of tree 

topologies. Multiple inner rings provide shortcuts to all ring sections and therefore reduce the 

average latency. Inner rings are established considering the heterogeneity of the peer-to-peer 

network. 

The proposed system adapts to the dynamic of the peer-to-peer networks. Peers may 

create topic-based groups at any time themselves, without the need of any centralized 
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management. In short, it gives them the communication tool to collaborate. Applications are 

various: instant discussion, file sharing, online conferences, audio or video broadcasting, and 

interactive distant learning are just examples. 

A prototype of the P2P Messaging System was implemented and successfully 

evaluated. Experimental performance benchmarks provided evidence for the efficiency and 

scalability of the system. However, the system still has to proof its usability in practice. Peer-

to-peer networks are highly complex and may require unforeseen adjustments to it In 

addition, there are some issues, which may complement the system. For example, it could be 

investigated how persistent storage could be utilized to increase reliability and allow time 

independent delivery. Another extension point would be to address management functions for 

private groups. Instead of a completely decentralized management, it would be necessary for 

some applications to restrict or control group membership. 

Overall, the main contribution of this thesis is to help peer-to-peer networks in the 

phase of maturing. Proven communication principles of messaging systems are adapted to 

allow efficient group communication among peers. 
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